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Abstract—Extremely large-scale multiple-input-multiple-
output (XL-MIMO), which offers vast spatial degrees of
freedom, has emerged as a potentially pivotal enabling
technology for the sixth generation (6G) of wireless mobile
networks. With its growing significance, both opportunities and
challenges are concurrently manifesting. This paper presents
a comprehensive survey of research on XL-MIMO wireless
systems. In particular, we introduce four XL-MIMO hardware
architectures: uniform linear array (ULA)-based XL-MIMO,
uniform planar array (UPA)-based XL-MIMO utilizing either
patch antennas or point antennas, and continuous aperture
(CAP)-based XL-MIMO. We comprehensively analyze and
discuss their characteristics and interrelationships. Following
this, we introduce several electromagnetic characteristics
and general distance boundaries in XL-MIMO. Given the
distinct electromagnetic properties of near-field communications,
we present a range of channel models to demonstrate the
benefits of XL-MIMO. We further discuss and summarize
signal processing schemes for XL-MIMO. It is worth noting
that the low-complexity signal processing schemes and deep
learning empowered signal processing schemes are reviewed
and highlighted to promote the practical implementation of
XL-MIMO. Furthermore, we explore the interplay between
XL-MIMO and other emergent 6G technologies. Finally,
we outline several compelling research directions for future
XL-MIMO wireless communication systems.

Index Terms—XL-MIMO, channel modeling, near-field com-
munications, deep learning, signal processing.
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I. INTRODUCTION

A. Motivation

Since 2020, the fifth generation (5G) of wireless commu-
nication networks has witnessed widespread deployment and
development globally. The corresponding application scenarios
include enhanced mobile broadband (eMBB), massive ma-
chine type communications (mMTC), and ultra-reliable and
low latency communications (URLLC). 5G has been designed
to meet ambitious performance benchmarks, including 10 Gb/s
uplink peak data rate, 20 Gb/s downlink peak data rate, 5 ms
end-to-end latency, and 99.999% end-to-end reliability, among
others [1]–[3]. Several promising key technologies, such as
massive multiple-input-multiple-output (mMIMO), millimeter
wave (mmWave) [4], and ultra-dense networking (UDN),
have been implemented to meet these 5G requirements [5].
The anticipated sixth generation (6G) of wireless networks,
expected to serve communication needs beyond 2030, have
sparked significant research interest due to the advent of novel
requirements following the rapid evolution of wireless appli-
cations [6]–[12]. Compared with 5G networks, 6G networks
are anticipated to achieve a 100-fold increase in peak data
rate (reaching the Tb/s level), a tenfold reduction in latency,
and an end-to-end reliability requirement of 99.99999%. These
new requirements have inspired novel application scenarios by
extending conventional 5G eMBB, mMTC, and URLLC into
their enhanced 6G counterparts: further eMBB, ultra-mMTC,
and extensive variations of URLLC [9], [13]. Addressing these
extremely high expected demands on 6G, several promis-
ing technologies are garnering substantial attention, such
as extremely large-scale multiple-input-multiple-output (XL-
MIMO) [14]–[16], reconfigurable intelligent surfaces (RIS)
[17]–[21], and Terahertz-band communications [22]–[24]. All
these technologies are promising and can be integrated with
each other. In this survey, we focus on XL-MIMO technology,
which can significantly enhance the spectral efficiency (SE)
and spatial degrees of freedom (DoF) of wireless networks
[14]–[16].

As an emerging paradigm evolution of MIMO, XL-MIMO
is the next step in developing MIMO technology. MIMO
technology has been a key enabler of high-rate wireless
communication since the fourth generation (4G) of wireless
networks [25]–[30]. With the rapid development of wireless
communications and more critical communication demands
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TABLE I
DIFFERENCES BETWEEN XL-MIMO AND CONVENTIONAL MMIMO AND THEIR CHALLENGES/POTENTIALS.

New characteristics and
features

Challenges Potentials

More flexible hardware
designs

New hardware designs based on emerging
design ideas and materials: ULA-based,
UPA-based, and CAP-based XL-MIMO

The specific XL-MIMO design can be
chosen based on their specific needs,

network constraints, and desired
performance metrics.

A much larger number of
antennas

Additional design requirements, higher power
consumption, much higher signal processing

complexity, and consequent EM characteristics,
such as the spatial non-stationarity and severe

mutual coupling

Excellent SE and DoF performance [14]

The Much smaller antenna
spacing

Increased hardware complexity and severe
mutual coupling property

Ability to deploy an extremely large
number of antennas

New EM characteristics,
which are omitted or

inapplicable to be
considered in mMIMO

The consideration of new EM characteristics
such as the spherical wave characteristic [45]

and spatial non-stationarity [46], and brand-new
near-field based channel models such as the

Fourier plane-wave representation based channel
models [47]

The capture of actual EM characteristics
and the potential to implement near-field

based signal processing

Near-field based signal
processing schemes

The urgency to design near-field based signal
processing schemes for XL-MIMO due to the
mismatch of the conventional far-field based

signal processing schemes [14], [15]

New promising near-field based
applications: near-field beam focusing

[48] and near-field wireless energy
transfer [49], etc.

of users [31], the concept of mMIMO was proposed in [32].
Compared with basic MIMO technology, mMIMO involves
much larger numbers of antennas (up to hundreds of antennas)
at a wireless base station (BS). With the aid of many antennas,
the so-called channel hardening phenomenon and the favorable
propagation conditions can be exploited in mMIMO to reduce
inter-cell interference and achieve better SE performance.
MIMO systems can be divided into two implementation
paradigms: centralized and distributed. As for the distributed
implementation, the multi-cell scenario is a general case where
distributed antennas are deployed among multiple serving
cells. This concept includes coordinated multipoint (CoMP)
[33], [34] and distributed antenna systems (DAS) [35], [36].
However, the concepts of cell and cell boundary still exist,
and users at cell boundaries may suffer from strong inter-cell
interference. To cope with this problem, a distributed mMIMO
paradigm called cell-free massive MIMO (CF mMIMO) has
been proposed in [37]. Compared with cellular mMIMO, the
concept of cell boundary has been removed in CF mMIMO
systems, where a large number of distributed access points
(APs) are deployed in a wide area to serve the user equipment
(UE) by joint transmission and reception [38]–[44]. It is worth
noting that, in this setting, all APs are connected to central
processing units (CPUs), enabling various processing schemes
with different levels of cooperation between the APs and
CPUs to improve macro-diversity gain and achieve high SE
performance uniformly within the coverage area. CF mMIMO
is considered to be a key technology for beyond 5G and future
wireless communications.

With the further development of wireless communications

and much higher communications demands [50], the num-
ber of antennas and the array aperture are expected to be
much larger than those of existing mMIMO technologies.
Thus, XL-MIMO stands as a critical facilitator for next-
generation wireless networks, offering substantial improve-
ments in spectral efficiency, spatial resolution, and degrees
of freedom. These advancements, driven by its deployment
of a large array of antennas and substantial array aperture,
are essential to satisfying the increasing demands for high-
capacity communications [14]–[16]. The basic idea of XL-
MIMO is to deploy an extremely large number of antennas in
a compact space. Two mainstream implementation approaches
to this idea have been investigated in existing works. The
first implementation approach is to deploy a huge number
of antennas in a compact manner, where an antenna spacing
much smaller than the widely used half-wavelength is applied.
In this approach, thousands of antennas can be implemented
to achieve excellent system performance. The array aperture is
discrete due to the discrete deployment of antennas, like that of
mMIMO. The second implementation approach is to embed
an approximately infinite number of antennas in a compact
space in an extremely dense style so that the array aperture
can be viewed as being approximately continuous with the aid
of meta-materials. This approach is called continuous aperture
(CAP) MIMO. An ideal CAP MIMO adopts the form of
a spatially-continuous electromagnetic (EM) volume, where
an infinite number of infinitesimal antennas are embedded.
From a mathematical perspective, this implementation method
can also be viewed as the case of the first approach with
an infinitesimal antenna spacing. Note that the analytical



3

modeling and practical implementation for the first realization
approach are relatively mature. Thus, the first implementa-
tion approach has been widely considered in existing works.
However, due to the compact deployment, the mutual coupling
effect between the discrete antenna elements is severe. As
for the second implementation approach, the emerging meta-
materials can help to construct the approximately continuous
aperture. However, only a few works have investigated the
modeling and implementation of emerging meta-materials.
Thus, the second approach needs to be further explored.
Based on these two implementation approaches, many XL-
MIMO designs with different architectures and terminologies
have been studied, e.g., holographic MIMO [47], [51]–[53],
large intelligent surfaces (LISs) [54]–[57], extremely large-
scale antenna arrays (ELAAs) [15], [58], and CAP MIMO
[59]. All these XL-MIMO designs are promising enablers
for 6G and future wireless communications. However, the
characteristics and mutual relationships among these designs
have yet to be extensively discussed. Therefore, in this survey,
we introduce all these promising XL-MIMO designs and
present their features and their similarity and difference.

Compared with conventional mMIMO, the introduction of
XL-MIMO involves not only a sharp increase in the number of
antennas but also fundamental changes in EM characteristics,
which can be relied on to significantly improve the SE per-
formance and the spatial DoF [14], [15], [60]. We summarize
the differences between XL-MIMO and conventional mMIMO
and their challenges/potentials in Table I as:

• More flexible hardware designs: As discussed above,
two mainstream realization approaches for XL-MIMO can
be implemented. Moreover, many XL-MIMO designs over
different architectures and terminologies can be regarded as
promising implementation schemes, e.g., holographic MIMO,
LISs, ELAAs, and CAP MIMO. All these XL-MIMO designs
provide a much more flexible implementation than conven-
tional mMIMO. This flexibility arises from the availability
of multiple XL-MIMO designs [61], [62]. The specific XL-
MIMO design can be chosen based on specific needs, network
constraints, and desired performance metrics [63].

• A Much larger number of antennas: Compared with
conventional mMIMO, the number of antennas for XL-MIMO
is expected to have a higher order of magnitude [64], [65].
Many existing works focused on XL-MIMO consider thou-
sands or even ten thousand antennas for XL-MIMO with
discrete aperture, while for the ideal CAP-based XL-MIMO,
an infinite number of infinitesimal antennas can theoretically
be considered. Accompanied by the extremely large number of
antennas, hardware design in XL-MIMO is also different from
that of conventional mMIMO [49]. Besides, the extremely
large number of antennas would lead to extremely high signal
processing complexity and some other EM characteristics,
such as the spatial non-stationarity and severe mutual coupling
effect, which all need to be paid attention to when studying
XL-MIMO systems.

• The Much smaller antenna spacing: Note that half-
wavelength antenna spacing is widely considered in conven-
tional mMIMO [66]. However, in XL-MIMO, the antenna
spacing is expected to be much smaller than the conventional

half-wavelength. Much smaller antenna spacing can allow for
the deployment of an extremely large number of antennas
to achieve better performance than conventional mMIMO.
However, the small antenna spacing can increase the hard-
ware complexity and design precision when producing XL-
MIMO [14].
• New EM characteristics: Several new EM characteristics,

which are unnecessary to consider in conventional mMIMO,
must be taken into account in the design and deployment of
XL-MIMO. For instance, the spherical wave characteristics
instead of the planar wave characteristics should be consid-
ered when modeling the channel in XL-MIMO due to the
near-field property [14], [15]. Moreover, other important EM
characteristics, such as channel spatial non-stationarity [46],
mutual coupling [67], and polarization [68], should also be
considered in XL-MIMO. Based on these EM characteristics,
the channel models for XL-MIMO are much different from
those of conventional mMIMO [14], [15], [60].
• Near-field based signal processing: Existing signal pro-

cessing schemes for conventional mMIMO may not apply to
XL-MIMO due to the different channel features of XL-MIMO.
Thus, the near-field based signal processing schemes should
be designed to exploit the full capability of XL-MIMO. Some
new and near-field based processing schemes, such as the polar
domain channel estimation [69] and near-field beam focusing
[48], are of interest.

As discussed above, challenges and opportunities of XL-
MIMO mainly arise from two aspects: the extremely large
number of antennas and near-field characteristics. The ex-
tremely large number of antennas results in significant sig-
nal processing complexity and unique EM characteristics
not present in conventional mMIMO. With this increase in
antennas, near-field communication traits become significant,
making far-field-based channel models and signal processing
schemes used in conventional mMIMO ineffective. Therefore,
it is important to develop near-field channel models and signal
processing schemes for XL-MIMO. These aspects and their
associated characteristics present the main challenges for XL-
MIMO systems that require further study.

B. Comparisons and Key Contributions

XL-MIMO technology has attracted considerable research,
and some review papers have emerged to focus on this
topic. The authors in [16] focused on the holographic MIMO
surface (HMIMOS). The physics aspects of HMIMOS were
reviewed from the perspectives of hardware structures, holo-
graphic design methodologies, tuning mechanisms, and aper-
ture shapes. Then, the theoretical foundations for HMIMO
communications were comprehensively introduced from chan-
nel modeling, performance analysis, EM field sampling, and
EM information theory inspired by a first-principles perspec-
tive. To promote the practical implementation of XL-MIMO,
some signal processing schemes for HMIMO communications
were reviewed regarding holographic channel estimation and
holographic beamforming/beam focusing. However, the au-
thors focus mainly on HMIMOS, which is one of the XL-
MIMO technologies. Thus, a survey focusing on a more
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TABLE II
COMPARISONS BETWEEN RELEVANT SURVEY PAPERS ON XL-MIMO AND OUR PAPER.

Key contributions Main limitations

[16]

C
om

pr
eh

en
si

ve
su

rv
ey

• Review basic physics aspects of HMIMOS and provide
a panoramic view

• Introduce the theoretical foundations and enabling tech-
nologies for HMIMO communications

• Summarize signal processing schemes for HMIMO
communications

• Demonstrate various extensions of HMIMOs and future
directions

• Focus mainly on HMIMOS, which is one of the XL-
MIMO technologies

• Review the theoretical foundations of the HMIMOS phys-
ical layer simply, without further excavating the unique
characteristics for XL-MIMO

[70]

• Introduce near-field channel models for both the SPD
and CAP antennas

• Highlight the near-field beamfocusing and antenna archi-
tectures

• Discuss performance analysis framework for near-field
LoS and statistical channels

• Omit the review and comparison for XL-MIMO hardware
designs (so-called SPD and CAP antennas in [70])

• More low-complexity near-field aided signal processing
schemes should be investigated

Key contributions

[15]

Sh
or

t
br

ie
f

• Review the near-field features of the ELAA-based system
• Introduce some key challenges of near-field communications, including near-field channel estimation and beam
split

[71] • Discuss the opportunities and challenges in radiating near-field communications
• Highlight the spherical waves based beamfocusing schemes

[60] • Address the technical problem “What will be different between near-field communications and far-field communi-
cations?” from four perspectives: channel modeling, performance analysis, beamforming, and applications

[14] • Summarize several XL-MIMO schemes and introduce their characteristics and relationships
• Review the fundamentals of XL-MIMO from channel modeling, performance analysis, and signal processing

O
ur

pa
pe

r

C
om

pr
eh

en
si

ve
su

rv
ey

Overlapping Contributions Distinct Contributions

• Summarize four XL-MIMO hardware designs and intro-
duce their characteristics and relationships

• Review fundamentals of the near-field channel modeling
from the perspective of LoS propagation, NLoS propaga-
tion, and hybrid propagation

• Discuss the near-field signal processing schemes for XL-
MIMO systems

• Outline a series of applications and future directions for
XL-MIMO

• Comprehensively summarize the system implementation
features and antenna characteristics for four XL-MIMO
hardware designs

• Motivate the performance comparison framework for four
XL-MIMO hardware designs

• Summarize distinct EM characteristics and distance
boundaries for XL-MIMO

• Provide many tutorials for the near-field channel model-
ing

• Review many low-complexity signal processing schemes
to promote the practical implementation of XL-MIMO

• Summarize and motivate the deep learning empowered
signal processing schemes for XL-MIMO

general XL-MIMO technology is needed. Also, theoretical
foundations of the HMIMOS physical layer were reviewed
in [16] briefly. Some critical issues for the practical im-
plementation of XL-MIMO also need elaboration, such as
the low-complexity signal processing schemes and practical
implementation paradigm.

In particular, the authors in [70] studied near-field commu-
nication for XL-MIMO, presenting basic near-field channel
models for both spatially-discrete (SPD) antennas and CAP
antennas, including uniform spherical wave (USW) and non-
uniform spherical wave (NUSW) models for the former, and
Green’s function models for the latter. It emphasizes near-field
beamfocusing and advanced antenna designs, detailing the hy-
brid beamforming architectures, metasurface-based antennas
for approximating CAP antennas, DoF analysis framework
for near-field communications, and near-field beam training.
Additionally, the authors explored the performance analysis
framework for line-of-sight (LoS) and statistical channels,
respectively. For LoS channels, the signal-to-noise ratio (SNR)

and power scaling laws were studied. For the statistical
channels, the authors analyzed the outage probability (OP),
ergodic channel capacity (ECC), and ergodic mutual informa-
tion (EMI). However, this study lacks a comparative analysis
of XL-MIMO hardware design (so-called SPD antennas and
CAP antennas in [70]), which calls for further research on
low-complexity, near-field signal processing schemes.

In addition to [16] and [70], there are several short overview
papers [14], [15], [60], [71] giving details of XL-MIMO from
different perspectives. The authors in [15] reviewed the near-
field features of the ELAA-based system. The fundamen-
tal differences between near-field and far-field communica-
tions were clarified. Then, some key challenges of near-field
communication were introduced, including near-field channel
estimation and near-field beam split. The authors in [71]
highlighted the near-field beam focusing aspect, where the
spherical wave characteristics, near-field channel models, and
promising near-field beam focusing features were presented.
Alternatively, the technical problem “What will be different
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TABLE III
IMPORTANT ABBREVIATIONS.

Abbreviation Definition Abbreviation Definition

3GPP The third-Generation Partnership Project LTE Long-term evolution

ADC Analog-to-digital converter MIMO Multiple-Input-Multiple-Output

ANN Artificial neural network mMIMO Massive MIMO

AoA Angle-of-arrival MMSE Minimum mean-squared error

AoD Angle-of-departure mMTC Massive machine type communications

AP Access point MR Maximum ratio

BS Base station mmWave Millimeter wave

CAP Continuous aperture NLoS Non-line-of-sight

CE Channel estimation NMSE Normalized mean-squared error

CF Cell-free OMP Orthogonal matching pursuit

CNN Convolutional Neural Network PLS Physical layer security

CS Compressed sensing QoS Quality of Service

CSI Channel state information RIS Reconfigurable intelligent surface

DAS Distributed antenna system SCA Successive convex approximation

DoF Degrees of Freedom SE Spectral efficiency

ELAA Extremely large-scale antenna array THz Terahertz

EM Electromagnetic UAV Unmanned aerial vehicles

eMBB Enhanced mobile broadband UE User equipment

EP Expectation propagation ULA Uniform linear array

HMIMOS Holographic MIMO surface UPA Uniform planar array

IoT Internet of Things URLLC
Ultra-reliable and low latency

communications

LISs Large intelligent surfaces VMP Variational message passing

LoS Line-of-sight VR Visibility region

LPU Local processing unit XL-MIMO Extremely large-scale MIMO

LS Least square ZF Zero-forcing

between near-field communications and far-field communica-
tions?” was addressed in [60] from four perspectives: channel
modeling, performance analysis, beamforming, and applica-
tions. Moreover, the authors in [14] summarized several XL-
MIMO schemes and introduced their characteristics and rela-
tionships. Furthermore, the fundamentals of XL-MIMO were
reviewed from channel modeling, performance analysis, and
signal processing. All these studies provide important insights
for XL-MIMO and near-field communications. However, they
mainly focus on a single XL-MIMO technology and design
or provide reviews from a particular perspective. They lack a
holistic presentation and comparison of the technical aspects
and technical tutorials of XL-MIMO systems.

To this end, in this paper, we review XL-MIMO technology
extensively. The major contributions of our survey are sum-
marized as follows.

• We introduce four XL-MIMO designs: uniform linear
array (ULA)-based XL-MIMO, uniform planar array
(UPA)-based XL-MIMO with patch antennas or point
antennas, and CAP-based XL-MIMO. More importantly,
we present their characteristics from the perspective of

antenna spacing, antenna characteristics, communication
scenarios, and implementation carrier frequencies. More-
over, we demonstrate the mutual relationships of these
four XL-MIMO designs to provide important insights for
the analysis and implementation of XL-MIMO.

• The fundamentals of the channel modeling for XL-MIMO
are reviewed thoroughly including line-of-sight (LoS)
propagation channel modeling, non-line-of-sight (NLoS)
propagation channel modeling, and hybrid propagation
channel modeling. We also provide guidelines for the
channel modeling of XL-MIMO. Notably, we also discuss
the electromagnetic characteristics of XL-MIMO and dis-
tance boundaries and EM regions, which systematically
summarize the EM features of XL-MIMO.

• We review signal processing schemes for XL-MIMO
from the perspective of channel estimation, beamforming
schemes design, and machine learning empowered pro-
cessing. Notably, the low-complexity channel estimation
and beamforming designs are presented and motivated to
gain insights into the practical implementation of XL-
MIMO.
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Section Ⅰ: Introduction

 Ⅰ. A: Motivations  Ⅰ. B:  Comparisons and Key Contributions  Ⅰ. C:  Organization of the Survey
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Ⅱ. A: ULA–Based XL-MIMO Ⅱ. B:  UPA–Based XL-MIMO
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Ⅲ. A:  Electromagnetic Characteristics for XL-MIMO

Spherical Wave 
Characteristics

 Spatial Non-
Stationary Property

 EM Polarization 
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Ⅲ. B:  Distance Boundaries and EM Regions

Rayleigh 
Distance

Fresnel 
Distance

Mutual Coupling 
Property

Björnson 
Distance

Uniform Power 
Distance

Effective Rayleigh 
Distance

Ⅲ. C: LoS Propagation

 Green’s 
Function Based

Complex-Valued 
Channel Response 

Representation

Ⅲ. D:   NLoS Propagation 

 Fourier Plane-Wave Representation Based 

 Array Response Vector Representation Based

Ⅲ. E:   Hybrid Propagation 

Hybrid Propagation Path Channel Modeling Hybrid-Field Channel Modeling

Section Ⅳ: Signal Processing

Ⅳ. A: Channel Estimation

Polar Domain 
Based 

Parameters 
Based 

 Joint Activity and 
Channel Estimation

Ⅳ. B: Beamforming Schemes Design

Conventional Linear 
Beamforming Schemes

Low-Complexity 
Beamforming Schemes

Low-
Complexity 

Optimization Design for 
Beamforming Schemes

Machine 
Learning Based

Ⅳ. C:  Machine Learning Empowered Signal Processing

Machine Learning Based Beamforming Distributed Learning

Section Ⅴ: Application Scenarios

Section Ⅵ: Future Research Directions

Section Ⅶ: Conclusions

Ⅱ. C: CAP-Based XL-MIMO

Ⅴ. A: Physical Layer 
Security Enhancement

Ⅴ. B: UAV Communications
Ⅴ. C: Mobile 

Communication Networks

Ⅴ. D: Internet-of-Things Ⅴ. E: Edge Computing Ⅴ. F: Massive Connectivity

Ⅵ. A: AI-Aided Resource 
Allocation Scheme

Ⅵ. B: Energy Efficiency and 
Green Communication

Ⅵ. C: Semantic 
Communications

Ⅵ. D: XL-MIMO-Aided 
Wireless Network Security

Ⅵ. E: Testbeds and 
Experimental Evaluation

Fig. 1. The organization structure of the survey.

• Finally, we discuss XL-MIMO application scenarios, e.g.,
physical layer security enhancement, integrated sensing
and communications, and internet-of-things, and provide
many directions for future research on XL-MIMO, such
as AI-aided resource allocation scheme, energy efficiency,
and green communication, and semantic communications.

We provide a more detailed comparison between our paper
and the existing survey papers and short overview papers in
Table II.

C. Organization of the Survey

The organization of this survey is illustrated in Fig. 1. In
Section II, we first present hardware designs for XL-MIMO.
ULA-based XL-MIMO, UPA-based XL-MIMO, and CAP-
based XL-MIMO are introduced. Then, channel modeling for
XL-MIMO is reviewed in Section III. The EM characteristics
for XL-MIMO are first introduced in Section III-A, and
distance boundaries are presented in Section III-B. More sig-
nificantly, channel modeling for XL-MIMO is introduced from

the perspective of LoS propagation channel modeling, NLoS
channel propagation channel modeling, and hybrid propaga-
tion channel modeling in Section III-C, Section III-D, and Sec-
tion III-E, respectively. Section IV focuses on low-complexity
signal processing schemes designed for XL-MIMO. In Sec-
tion IV-A, we review channel estimation for XL-MIMO and
introduce many low-complexity channel estimation schemes
for XL-MIMO. Section IV-B highlights the low-complexity
beamforming schemes designed for XL-MIMO. Moreover,
the deep learning-empowered signal processing design is pre-
sented in Section IV-C, while Section V discusses major XL-
MIMO application scenarios. Finally, a series of directions
for future research on XL-MIMO are discussed in Section VI.
Some important abbreviations are summarized in Table III.

II. OVERVIEW OF XL-MIMO HARDWARE DESIGNS

This section introduces major XL-MIMO hardware designs
and reviews their characteristics. More specifically, four gen-
eral XL-MIMO hardware designs are introduced: Uniform
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Sizeless elements

(a) ULA-based XL-MIMO

(c) UPA-based XL-MIMO (point antennas)

(b) UPA-based XL-MIMO (patch antennas)

(d) CAP-based XL-MIMO

: The vertical antenna spacing

: The number of antennas per column

: The horizontal antenna spacing
: The number of antennas per row

: The horizontal element length
: The vertical element length

Fig. 2. Hardware design characteristics for the general XL-MIMO schemes
and their relationships among each other.

Linear Array (ULA)–based XL-MIMO, Uniform Planar Array
(UPA)–based XL-MIMO with patch antenna elements or point
antenna elements, and Continuous Aperture (CAP)-based XL-
MIMO [14]. Note that ULA-based XL-MIMO, UPA-based
MIMO with patch antenna elements, and UPA-based XL-
MIMO with point antenna elements follow the first imple-
mentation approach for XL-MIMO, utilizing a discrete array
aperture. In contrast, CAP-based XL-MIMO adheres to the
second implementation approach, employing a continuous
array aperture for construction.

Fig. 2 illustrates their hardware design diagram and rela-
tionships. More importantly, we provide the characteristics and
comparisons among these hardware designs in Table IV.

A. Uniform Linear Array (ULA)–Based XL-MIMO

Due to its simple hardware design and analysis, the ULA
structure is well-investigated in conventional mMIMO. The BS
in conventional mMIMO is typically equipped with 64 or 128
antennas. However, the number of antennas for ULA-based
XL-MIMO is expected to be increased to another order of
magnitude compared with that of conventional mMIMO, e.g.,
512 antennas or thousands of antennas. Many existing works
considered ULA-based XL-MIMO [45], [58], [64], [66], [69],
[72]–[93]. We summarize the system implementation features
and antenna characteristics for ULA-based XL-MIMO in
Table V. The significant aspects are discussed as follows:

• Number of BS antennas: Many works studied ULA-
based XL-MIMO with thousands of antennas [66], [73], [76],
[81]–[83], [85]. For instance, the authors in [76] and [82]
investigated a ULA-based XL-MIMO system where the BS

is equipped with 1024 and 2048 antennas, respectively. Be-
sides, other works mainly considered ULA-based XL-MIMO
systems with 256 [58], [64], [69], [84] or 512 [72], [74], [75],
[77], [89] antennas. The number of BS antennas in XL-MIMO
is much larger than that of mMIMO, which means that a much
higher hardware design complexity for XL-MIMO should be
considered compared with mMIMO.
• Antenna spacing: Although the number of antennas for

ULA-based XL-MIMO is much larger than that of mMIMO,
the antenna spacing is widely assumed to be half-wavelength
[58], [78], [89]. Moreover, another choice of antenna spacing
is determined by the total length of the array and the number
of antennas, which can be adjusted accordingly [75], [79],
[80]. For this choice, the antennas are uniformly distributed
in a particular length, and the antenna spacing is equal to the
total length of the array divided by the number of antennas.
In this setting, the antenna spacing can be smaller than the
conventional half-wavelength.
• Communication scenarios: As for the communication

scenarios, all existing works studied a single BS scenario.
Also, a single user [69], [75], [76], [78] or multiple users
[74], [79], [81], [85] were served. The majority of existing
works assumed that each user was equipped with only a single
antenna [64], [73], [77], [88]. However, some works assumed
that the user was also equipped with a ULA [78], [84].
More specifically, the authors in [78] and [84] considered a
single ULA-based user with 64 and 256 antennas, respectively.
Compared with the single-user scenario, the scenario with
multiple users is more practical. However, the interference
introduced by multiple users should be accurately modeled in
XL-MIMO. Besides, compared with the single-antenna user
setting, the scenario with the user equipped with ULA-based
XL-MIMO presents a more complicated system model and
signal processing scheme but can achieve more capability for
XL-MIMO in excellent spatial resolution.
• Carrier frequencies: ULA-based XL-MIMO can be im-

plemented at various carrier frequencies from 2.4 GHz to
100 GHz [69], [72], [74], [78], [83], [85], [89]. More specif-
ically, in [66], [72], [75], [81], [83], [85], ULA-based XL-
MIMO systems were implemented on the Sub-6GHz. For
instance, ULA-based XL-MIMO systems in [83] and [66]
were operated on the carrier frequency of 2.4 GHz and
3.5 GHz, respectively. Besides, in [74], the authors considered
the operation frequency at a mmWave band with the carrier
frequency of 30 GHz. ULA-based XL-MIMO system can also
operate at the THz band as [58], [84], [88], [133] with the
100 GHz. These observations provide intuitive insights for
further research of XL-MIMO that XL-MIMO can operate
over wide ranges of carrier frequency.

• Sub-array architecture: When the BS is equipped with
ULA-based XL-MIMO, the array aperture is much larger
compared with that of mMIMO, so it is helpful to divide the
array into a few sub-arrays, which have the signal processing
capability, to reduce the signal processing complexity [64],
[76], [77], [80], [82], [88]. For instance, the authors in [88]
considered that the BS was equipped with M -antenna ULA,
and MRF RF chains were employed. The antenna array
was divided into MRF sub-arrays, and each sub-array with
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TABLE IV
THE CHARACTERISTICS AND COMPARISONS AMONG DIFFERENT HARDWARE DESIGNS. “(A)→(B)” DENOTES THE INTERCONVERSION FROM THE

XL-MIMO DESIGN (A) TO THE XL-MIMO DESIGN (B).

Schemes
(a) ULA-based

XL-MIMO
(b) UPA-based XL-MIMO

(patch antennas)

(c) UPA-based
XL-MIMO (point

antennas)

(d) CAP-based
XL-MIMO

References
[45], [58], [64], [66],

[69], [72]–[93]
[45], [51], [53], [56], [65],

[94]–[101]
[56], [63], [68], [91],

[102]–[119]
[45], [47], [52], [54], [57],

[59], [90], [120]–[132]

Characteristics Discrete aperture Discrete aperture Discrete aperture Continuous aperture

Antenna
features

Patch/Point antennas
Patch antenna element with the

a certain size
Sizeless point antenna

element

An infinite number of
infinitely sizeless antenna

elements

Design
interconversion

(b) or (c)→(a): Only
one column or one row

of antenna elements.

Other schemes can be viewed
as special cases of Scheme (b).

(b)→(c): The antenna
element size is
infinitesimal.

(b)→(d): The antenna
element size equals the

antenna spacing. (c)→(d):
The antenna spacing is

infinitesimal.

Benefits
1) Simple hardware
design; 2) Easy for

analysis
General hardware design

Easy for the analysis for
the plane-based

XL-MIMO

Every point can manipulate
EM waves in real-time

Limitations
Low spatial degree of

freedom

Difficult for performance
analysis due to the

consideration of element size

Idealistic assumption with
sizeless antenna elements

The research for the
meta-material, which is

necessary for the design of
CAP-based XL-MIMO, is

still in its early stage.

N = M/MRF antennas was connected to an RF chain. In
the simulation, the authors considered ULA-based XL-MIMO
system with M = 256 antennas, and the antenna array was
composed of MRF = 4 sub-arrays. As discussed later, this sub-
array architecture can be relied on to implement the distributed
processing and describe the spatial non-stationarity.

• Aperture size: The aperture size of ULA-based XL-MIMO
can be depicted by the array length L = M△ with M and
△ being the number of antennas and the antenna spacing,
respectively. As shown in Table V, the antenna spacing △
is assumed to be half-wavelength in most works. A large
aperture size can be implemented when the BS has thousands
of antennas. For instance, the ULA with the length of 85.71 m
was investigated in [66] with M = 2000 and the carrier
frequency of 3.5 GHz. Note that the aperture size is an
important factor for implementing XL-MIMO practically. For
ULA-based XL-MIMO, the aperture size depends on the array
length, which is determined by the number of antennas and the
antenna spacing. A high carrier frequency and small antenna
spacing can support the implementation of ULA-based XL-
MIMO with moderate aperture size.

As for another promising XL-MIMO scheme, UPA-based
XL-MIMO is also regarded as an emerging scheme [63],
[65], [95], [97], [98]. Most of these works considered that
the BS was equipped with a rectangular or square plane.
However, the plane with the other shapes, such as the circular
plane [119], was also feasible. Without loss of generality, for
the rectangular plane-based UPA, the antenna elements are
densely packed along the horizontal and vertical directions of
the plane. The numbers of antennas per column and row are

denoted by MV and MH , respectively. Moreover, the UPA has
M = MV MH antennas. Besides, the vertical and horizontal
antenna spacing is △V and △H , respectively. Thus, the side
lengths of the planar array are denoted as LV = MV △V and
LH = MH△H , respectively. More importantly, distinguished
from the modeling and analysis, two types of antenna elements
can be considered:
• Patch antenna with a particular size: One well-

investigated antenna type is the patch antenna with a certain
size [45], [56], [96]–[99]. For the generality, as shown in Fig.
2, we consider the rectangle patch antennas with AH × AV

element size, where AH and AV are the horizontal and vertical
antenna spacing, respectively. Note that most of the related
works considered square patch antennas, where thousands of
square patch antennas are incorporated to construct a plane
[45], [96]–[99]. As discussed in [45], it is necessary and
practical to consider the antenna element size to exactly model
the EM waves impinged from various directions, especially
with large array sizes.

• Sizeless point antenna: For its convenience of modeling
and analysis, another antenna scheme for UPA-based XL-
MIMO is to consider the sizeless point antenna [68], [102]–
[104], [106], [108]. Note that the sizeless point antenna is
mainly motivated from the perspective of channel modeling
and performance analysis. Moreover, from the mathematical
perspective, the sizeless point antenna is a special case of the
patch antenna by letting A → 0 or assuming that only a par-
ticular point across the patch antenna receives the impinging
EM wave.

Compared with the sizeless antenna, the patch antenna is
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TABLE V
SYSTEM IMPLEMENTATION FEATURES AND ANTENNA CHARACTERISTICS FOR ULA-BASED XL-MIMO. SB-MU AND SB-SU DENOTE THE SCENARIO

WITH SINGLE BS AND MULTIPLE USERS AND THE SCENARIO WITH SINGLE BS AND SINGLE USER, RESPECTIVELY.

Ref.
Communication

scenario
UL/DL

Sub-array
architecture

Number of BS
antennas

Antenna spacing
Aperture

size
Carrier

frequency

[69] SB-MU UL % 256 Half-wavelength 0.38 m 100 GHz

[64] SB-MU UL ! 256 0.0578 m 14.8 m –

[88] SB-SU UL ! 256 Half-wavelength 0.38 m 100 GHz

[72] SB-SU UL % 512 Half-wavelength 21.94 m 3.5 GHz

[73] SB-MU DL % 1000 Half-wavelength 50 m 3 GHz

[74] SB-SU UL % 512 Half-wavelength 2.56 m 30 GHz

[75] SB-MU UL % 512 Uniformly distributed in
a particular length

30 m 2.6 GHz

[76] SB-SU UL ! 1024 1/2 – –

[58] SB-SU UL % 256 Half-wavelength 0.38 m 100 GHz

[89] SB-SU UL % 512 Half-wavelength 1.28 m 60 GHz

[78] SB-SU – % 128 Half-wavelength 1.92 m 10 GHz

[80] SB-MU UL ! 500 Uniformly distributed in
a particular length

100 m –

[66] SB-SU UL % 2000 Half-wavelength 85.71 m 3.5 GHz

[82] SB-MU DL ! 2048 – – –

more practical and can be implemented in practice. However,
it is also more difficult for analysis since many integrals across
each patch antenna element need to be calculated due to the
consideration of element size. Although the sizeless antenna
choice is easy to analyze, this choice is an idealistic as-
sumption without considering element size, which may not be
practical. The element architecture for UPA-based XL-MIMO
can be selected based on different requirements. The sizeless
antenna modeling and analysis ideas can also be implemented
for the patch antenna-based scenario by assuming that only one
receiving point across each antenna element is impinged. The
system implementation features and antenna characteristics for
UPA-based XL-MIMO are summarized in Table VI. Some
main issues are clarified as follows:

• Number of BS antennas: Compared to ULA-based XL-
MIMO with thousands or hundreds of antennas, the BS in
UPA-based XL-MIMO can be equipped with another order-
of-magnitude number of antennas, maybe tens of thousands
of antennas. The authors in [65], [95], [97], [119] investigated
UPA-based BS with tens of thousands of antennas. For in-
stance, the BS in [98] was equipped with 200× 200 = 40000
antennas, with MV = MH = 200. Moreover, the majority
of works considered UPA-based XL-MIMO with thousands
of antennas [53], [102], [106], [110], [118]. For instance, the
authors in [110] considered the BS with 140 × 56 = 7840
antennas, where MH = 140 and MV = 56, respectively.
Compared with ULA-based XL-MIMO, the hardware design
of UPA-based XL-MIMO is much more complex since many
antennas should be compactly deployed across a plane.

• Antenna spacing: The antenna spacing for UPA-based XL-
MIMO can be smaller than half-wavelength λ [51], [53], [65],
[95], [102], [106]. For instance, the authors in [53] considered
various values of the antenna spacing with △V = △H =

λ/6, λ/12, λ/15. Besides, the authors in [106] investigated the
UPA with MV = 32 microstrips, each of which embedded
with MH = 80 antennas. The spacing between adjacent
microstrips and the antenna spacing in each microstrip is
△V = λ/2 and △H = λ/5, respectively. Another setting of
the antenna spacing is to consider the plane with fixed-length
sides (fixed LV and LH ), and the antennas are uniformly
distributed across the plane [68], [97]. Thus, the antenna
spacing △V = LV /NV and △H = LH/NH can be adjusted
in the simulation part by considering various numbers of an-
tennas. The antenna spacing has a great effect on the system’s
performance. However, for UPA-based XL-MIMO with fixed
physical size, decreasing the antenna spacing may not always
benefit the system performance but significantly increase the
design complexity [14], [68]. Thus, antenna spacing is an
important factor in designing XL-MIMO. Moreover, relying on
the 2D characteristics, both the vertical and horizontal antenna
spacing can be correspondingly designed to meet different
design requirements.

• Antenna characteristics: The physical size of each antenna
element has also been considered for UPA-based XL-MIMO
with patch antennas. For instance, the area of each antenna
element in [98] was λ2/4π. Besides, the authors in [65]
assumed that the element length was equal to the antenna
spacing. Moreover, the authors in [53] and [68] considered the
scenario that each user was also equipped with UPA-based XL-
MIMO with patch antennas and point antennas, respectively.
Multiple users with 144 antennas each were investigated in
[53]. Moreover, the transmitter and receiver were equipped
with a plane array of the same size. It was worth noting that the
circular plane-based XL-MIMO was also a promising scheme,
as discussed in [119].

• Aperture size: When the BS is equipped with thousands or
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TABLE VI
SYSTEM IMPLEMENTATION FEATURES AND ANTENNA CHARACTERISTICS FOR UPA-BASED XL-MIMO. SB-MU AND SB-SU DENOTE THE

COMMUNICATION SCENARIO WITH A SINGLE BS AND MULTIPLE UES, AND THE COMMUNICATION SCENARIO WITH A SINGLE BS AND A SINGLE UE,
RESPECTIVELY. λ DENOTES THE WAVELENGTH.

Antenna
element

architecture
Ref.

Communication
scenario

UL/DL
Number of

BS antennas
Antenna
spacing

Aperture size
Antenna

characteristics
Carrier

frequency

Patch antenna

[65] SB-MU DL 200× 200
0, λ/4

λ/2, 3λ/4
50λ× 50λ

The element
length is equal to
antenna spacing.

–

[95] SB-MU DL 103 ∼ 106 λ/4 7.5 m× 7.5 m – 10 GHz

[97] SB-MU UL 4096

Uniformly
distributed in

the plane
1.2 m× 1.2 m

Distributed
architecture with

square-shape
sub-panels

4 GHz

[98] SB-MU UL 200× 200 λ/2 12.6 m× 12.6 m
The area of each

element is λ2/4π.
2.4 GHz

[53] SB-MU DL 3600
λ/6, λ/12,

λ/15
0.3 m× 0.3 m

UPA based UEs
with 144 antennas

10 GHz

Point antenna

[102] SB-MU UL 40× 40 λ/4 0.1 m× 0.1 m
Multi-antenna

users
30 GHz

[119] SB-MU DL 124980 λ/2

A circular planar
array with the

radius of 10 cm

Circular planar
array based BS

300 GHz

[106] SB-MU UL 80× 32
△V = λ/2

△H = λ/5
0.18 m× 0.18 m △V ̸= △H 26 GHz

[68] SB-SU – 30× 30

Uniformly
distributed in

the plane
10λ× 10λ

Plane array based
transmitter and

receiver
–

[110] SB-MU DL 140× 56
△V = λ/2

△H = λ/5
0.3 m× 0.3 m △V ̸= △H 28 GHz

even tens of thousands of antennas, the aperture size becomes
an important factor, especially in practical implementation. For
the rectangular plane-based UPA, the aperture size of the plane
is determined by LV = MV △V and LH = MH△H . As dis-
cussed in Table VI, the antenna spacing △V and △H in most
works depend on the wavelength λ. Thus, the aperture size
of the UPA is mainly determined by the number of antennas
and the antenna spacing. In [98], 12.6 m× 12.6 m UPA was
considered with MV = MH = 200, △V = △H = λ/2 and
fc = 2.4 GHz. Similar to ULA-based XL-MIMO, the high
carrier frequency, and small antenna spacing must be taken
into account in the implementation of UPA-based XL-MIMO
with a moderate aperture size.

B. Uniform Planar Array (UPA)–Based XL-MIMO

• Carrier frequencies: Various carrier frequencies can be
adopted in UPA-based XL-MIMO from 2.4 GHz to 300 GHz.
The authors in [95] and [97] considered UPA-based XL-
MIMO systems on the Sub-6GHz, where 4 GHz and 2.4 GHz
carrier frequencies were investigated in [95] and [97], re-
spectively. Besides, the mmWave band can also be imple-
mented [53], [106], [110]. For instance, the carrier frequency
of 30 GHz was considered in [53]. The authors in [119]

investigated the XL-MIMO system operated in the THz band
with 300 GHz carrier frequency.

C. Continuous Aperture (CAP)-Based XL-MIMO

For the CAP MIMO, with the aid of meta-materials, ex-
tremely dense antennas are embedded in a compact space so
that the array aperture for the CAP MIMO is approximately
continuous [47], [54], [55], [57], [59]. Specifically, an ideal
CAP MIMO comprises an infinite number of infinitesimal
antennas and adopts the form of a spatially-continuous EM
volume. This hardware design is also called “holographic
MIMO” [47], [52], [120], [127], [128], [134] or “LISs” [54],
[55], [57], [123], [125], [131]. Note that ULA-based XL-
MIMO and UPA-based XL-MIMO take the form of discrete
antennas over particular antenna spacing. However, CAP-
based XL-MIMO adopts the form of the spatially-continuous
aperture with an approximately infinite number of infinitesimal
antennas. Furthermore, CAP-based XL-MIMO can generate
any continuous current with any distribution on its spatially-
continuous volume. We summarize the system implementation
characteristics and antenna features for CAP-based XL-MIMO
in Table VII. Some classical aspects are discussed as follows:
• Aperture architecture: Among the existing works for CAP-

based XL-MIMO, two representative aperture architectures
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TABLE VII
SYSTEM IMPLEMENTATION FEATURES AND ANTENNA CHARACTERISTICS FOR CAP-BASED XL-MIMO. SB-MU AND SB-SU DENOTE THE SCENARIO

WITH SINGLE BS AND MULTIPLE USERS AND THE SCENARIO WITH SINGLE BS AND SINGLE USER, RESPECTIVELY.

Aperture
architecture

Ref.
Communication

scenario
UL/DL Aperture size Antenna characteristics Carrier frequency

1D line
segment

[52] SB-SU UL 5 m

1D CAP line segment-based
transmitter with the length of

0.3 m

30 GHz

[123] SB-SU
UL
DL

5 m
CAP line segment based
transmitter and receiver

300 GHz, 60 GHz,
28 GHz

[130] SB-MU UL 1 m Multiple single-antenna users 30 GHz

[120] SB-SU UL 3 m

1D CAP line segment-based
transmitter with the length of

0.2 m

30 GHz

2D plane

[55] SB-MU UL
Circular plane
with the radius

of 10 m

CAP circular plane, centralized
and distributed deployment

–

[57] SB-SU UL
The relative

receiver area is
considered.

The transmitter is equipped with
a 5× 5 cm2 CAP plane. The

rectangular receiver planes with
various length-width ratios are

considered.

28 GHz

[47] SB-SU – 30λ× 30λ
CAP plane based transmitter and

receiver
–

[59] SB-MU DL 1 m2 CAP plane based users 2.4 GHz

[131] MB-MU UL
Circular planes
with the radius

of 10 m

Centralized architecture and
distributed architecture

2 GHz

have been investigated: 1D CAP line segment and 2D CAP
plane. For 1D CAP-based XL-MIMO, line segments with
continuous aperture can be considered [52], [120], [123],
[130]. For 2D CAP-based XL-MIMO, 2D planes with arbitrary
shapes are commonly adopted [47], [55], [57], [59], [125],
[128], [131]. Among these works, the rectangular or square
CAP planes have been widely considered [47], [54], [57],
[59], [125], [128], [131]. For instance, the authors in [57]
studied a general scenario of rectangular receiver planes with
various length-width ratios. Besides, the circular CAP plane
can be adopted [55], [131]. From a mathematical perspective,
the 1D CAP line segment can be regarded as a special
case of ULA-based XL-MIMO with infinitesimal antenna
spacing. Similarly, the 2D CAP plane can also be regarded
as a special case of UPA-based XL-MIMO with infinitesimal
antenna spacing. Thus, CAP-based XL-MIMO analysis can be
performed based on the ULA/UPA-based XL-MIMO analysis
by adjusting the antenna spacing to be infinitesimal.

• Aperture size: Note that the aperture size of the afore-
mentioned ULA-based XL-MIMO and UPA-based XL-MIMO
is determined by the number of antennas and the antenna
spacing. However, different from the two aforementioned XL-
MIMO schemes, the aperture size of CAP-based XL-MIMO
is determined by the aperture length for 1D CAP-based XL-
MIMO and the area or side length for 2D CAP-based XL-
MIMO, due to its continuous aperture. For 1D CAP-based
XL-MIMO, line segments with a few meters in length were

considered [52], [120], [123], [130]. For instance, the authors
in [120] and [123] investigated 1D CAP-based XL-MIMO
with the length of 5 m. For 2D CAP-based XL-MIMO,
the authors in [55] and [131] considered the circular CAP
plane with the radius of 10 m. Moreover, the authors in [57]
investigated the relative receiver area, where the ratio between
the square of transmitting distance and the receiver area was
considered. Thus, various values of the receiver area could be
adjusted. Compared with ULA-based XL-MIMO and UPA-
based XL-MIMO with discrete aperture, the aperture size for
CAP-based XL-MIMO can be accurately determined by the
size length or the area due to the continuous aperture.

• Antenna characteristics: Some works studied the scenario
with both the transmitter and receiver equipped with CAP-
based line segments [52], [120], [123] or CAP-based planes
[47], [57], [59]. For instance, the authors in [52] and [120]
considered that the transmitter was equipped with the length of
0.3 m and the length of 0.2 m CAP line segment, respectively.
Besides, the transmitter in [57] was equipped with a 5×5 cm2

CAP plane. The authors in [55] and [131] investigated both
the centralized and distributed architecture. More specifically,
in [131], the centralized architecture with one large CAP
plane and the distributed architecture with a few randomly
deployed CAP planes were studied. Thus there were multiple
BSs equipped with CAP planes in this distributed architecture.

• Carrier frequencies: Similarly, CAP-based XL-MIMO
can operate on various carrier frequencies from 2 GHz to
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300 GHz. The Sub-6GHz carrier frequency was studied in
[59] and [131] with the carrier frequency being 2.4 GHz and
2 GHz, respectively. Besides, the authors in [52], [57], [120],
[123], [130] investigated CAP-based XL-MIMO system oper-
ated on the mmWave band. For instance, the carrier frequency
of 30 GHz was experimented in [52], [120], [123], [130]. The
authors in [123] considered various carrier frequencies, such
as the mmWave band (28 GHz) and THz band (300 GHz) [4],
[133].

D. Design Interconversion and Analysis Comparison
So far, four XL-MIMO hardware designs have been intro-

duced respectively. All these four XL-MIMO hardware designs
are potential and can be mutually interconverted as shown in
Fig. 2. More interestingly, UPA-based XL-MIMO with patch
antennas can be regarded as a general design. In contrast,
three other schemes can be viewed as special cases of UPA-
based XL-MIMO with patch antennas from a mathematical
perspective:

• UPA-based XL-MIMO (patch antennas) → UPA-based
XL-MIMO (point antennas): As discussed above, UPA-based
XL-MIMO with point antennas is a special case of UPA-
based XL-MIMO with patch antennas. From a mathematical
perspective, the sizeless point antenna can be adjusted from
the patch antenna with a particular size by letting A → 0 or
assuming that only a particular point across the patch antenna
receives the impinging EM wave. This scheme is a reasonable
assumption of UPA-based XL-MIMO with patch antennas,
which is convenient for the system analysis.

• UPA-based XL-MIMO (patch/point antennas) → ULA-
based XL-MIMO: ULA-based XL-MIMO can be viewed as a
special case of UPA-based XL-MIMO with only one column
or one row of antenna elements (MH = 1 or MV = 1).
Most works considered ULA-based XL-MIMO with point
antennas, but ULA-based XL-MIMO with patch antennas was
considered in [45].

• UPA/ULA-based XL-MIMO (patch/point antennas) →
2D/1D CAP-based XL-MIMO: While CAP-based XL-MIMO
employs a spatially-continuous aperture, diverging in design
and processing protocol from discrete array aperture XL-
MIMO systems, it is beneficial to establish clear mathematical
and physical connections between them. 1D CAP-based XL-
MIMO can be regarded as a special case of ULA-based
XL-MIMO by letting the antenna spacing be infinitesimal.
Moreover, when the element size of the patch antenna is
correspondingly equal to the antenna spacing (AH = △H and
AV = △V ), UPA-based XL-MIMO with patch antennas can
become 2D CAP-based XL-MIMO. Besides, 2D CAP-based
XL-MIMO can also be viewed as a special case of UPA-based
XL-MIMO with point antennas by considering an infinitesimal
antenna spacing.

Comparing XL-MIMO hardware design performance is cru-
cial for assessing their potential and advancing their practical
application [126], [135] from the perspective of effective DoF
(EDoF) and system capacity. The authors in [126] explored
ULA-based XL-MIMO and 1D CAP line segment-based XL-
MIMO. With both transmitter and receiver utilizing XL-
MIMO, the study began with a ULA-based design, calculating

EDoF from the channel matrix as indicated in [126, eq. (3)].
For the 1D CAP line segment-based XL-MIMO, the approach
involved defining a source auto-correlation kernel for channel
description and deriving EDoF through asymptotic analysis
within the established framework.

Based on the EDoF analysis framework from [126], the
authors in [135] first computed the EDoF for both the ULA and
1D CAP line segment analytically, then derived their capacity
based on [135, eq. (5)]. Notably, each antenna element of the
ULA had a particular length. Furthermore, by comparing the
discrete ULA with the 1D CAP line segment under equivalent
array aperture conditions, the authors found that the EDoF
of the discrete ULA converged to that of the 1D CAP line
segment as the number of antennas increased.

The analysis framework in [126] and [135] provided guide-
lines for the performance comparison for different XL-MIMO
hardware designs. However, [126] and [135] are limited to
1D arrays. The comparison of UPA-based XL-MIMO and 2D
CAP plane-based XL-MIMO performance remains an open
area for research. The EDoF for UPA-based XL-MIMO is
derivable from its discrete channel matrix, while the EDoF
for 2D CAP plane-based XL-MIMO requires a new definition
of the source auto-correlation kernel, building on the 1D
scenarios presented in [126] and [135].

Appropriate comparison criteria are essential for fair per-
formance comparisons between different XL-MIMO hardware
designs. To maintain comparability, specific characteristics and
settings across all designs must be uniform for fairness. For
ULA-based XL-MIMO and 1D CAP line segment-based XL-
MIMO, the performance comparison should be carried out
with the same array aperture, i.e., the same array length.
When comparing UPA-based XL-MIMO with 2D CAP plane-
based XL-MIMO, due to the abundant geometric variables,
several comparison principles could be considered: 1) Same
side length: in this case, both the UPA and 2D CAP plane have
the same physical size (i.e., side length, plane area, and array
aperture); 2) Same plane area: for the fixed same plane area,
the side length and the array aperture for the UPA and 2D CAP
plane can be different; and 3) Same array aperture: the array
aperture plays an important role in near-field communications.
As such, the array aperture can also be a comparison criterion.
Under Criteria 2) and 3), the side length and plane array can
be adjusted to gain insights for the practical implementation
of XL-MIMO. Given that UPA-based XL-MIMO and ULA-
based XL-MIMO have discrete array apertures and particular
numbers of antennas, the performance comparison can be
implemented by assuming the same number of antennas or
array apertures.

The aforementioned criteria for comparing various XL-
MIMO hardware designs lay a foundation for systematic
evaluation. However, the performance behaviors of these XL-
MIMO designs and the effectiveness of the comparison metrics
require further study in future research.

Lessons Learned: We summarize the lessons learned and
significant insights and compare XL-MIMO with conventional
mMIMO from the perspective of the system model design.
We review the system implementation features and antenna
characteristics for various XL-MIMO hardware designs in
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Table V-Table VII. To offer more insights into the four XL-
MIMO hardware designs, we compare their number of anten-
nas, antenna spacing, aperture size, and analysis framework,
aiming to guide future XL-MIMO research and aid in system
analysis, optimization, and practical application:

• Number of antennas: Compared with conventional
mMIMO, the number of antennas of XL-MIMO increases by
an order of magnitude. For ULA-based XL-MIMO, thousands
of antennas are employed. For UPA-based XL-MIMO, the
number of antennas can even approach tens of thousands as
many antennas can be simultaneously deployed across the
vertical and horizontal directions. However, as studied in [14],
[68], with the fixed physical size, there exists the EDoF
performance saturation: the EDoF would increase and then
become flat with the number of antennas increasing. Thus, it
will be interesting to study the optimal number of antennas
for different applications. For CAP-based XL-MIMO, thanks
to the meta-material, continuous or approximately continuous
array aperture can be realized by deploying extremely dense
antennas in a compact space. Thus, an infinite number of
infinitesimal antennas can be considered in an ideal CAP-
based XL-MIMO. However, due to the extremely large number
of antennas, the design complexity and deployed technology
for XL-MIMO impose much higher requirements than that of
conventional mMIMO.

• Antenna spacing: For ULA-based XL-MIMO, two choices
for the antenna spacing are mainly considered: the well-studied
half-wavelength antenna spacing and the adjustable antenna
spacing by limiting the total array length and adjusting the
number of antennas. For UPA-based XL-MIMO, many works
consider that the antenna spacing is much smaller than the
half-wavelength. More interestingly, UPA-based XL-MIMO
can have different antenna spacing in the vertical direction
and the horizontal direction instead of limiting them to equal,
which provides various design flexibility for the practical
implementation of XL-MIMO. Meanwhile, the infinitesimal
or approximately infinitesimal antenna spacing can be real-
ized for CAP-based XL-MIMO. Note that the much smaller
antenna spacing, compared with that of conventional mMIMO,
can provide the ability to deploy an extremely large number
of antennas in a compact space with a fixed physical size.
However, the small antenna spacing can introduce severe
mutual coupling effects and increase the design precision,
which should be noticed in XL-MIMO.

• Aperture size: For ULA-based XL-MIMO and UPA-based
XL-MIMO, the aperture size is usually determined by the
array length and the array side length, respectively. Due to
the discrete aperture, the aperture size of these two XL-
MIMO schemes is determined by the number of antennas
and the antenna spacing. Moreover, the antenna spacing is
usually dependent on the carrier frequency. Thus, the high
carrier frequency and small antenna spacing are advocated
to derive the moderate aperture size for implementing ULA-
based XL-MIMO and UPA-based XL-MIMO. For CAP-based
XL-MIMO, the aperture size can be precisely determined by
the aperture length for 1D CAP-based XL-MIMO and the area
or side length for 2D CAP-based XL-MIMO, respectively.
Compared with mMIMO, the aperture size for XL-MIMO

is much larger, which can be more clearly observed from
Table V∼Table VII.
• Analysis framework: Based on the above observations,

important characteristics for four XL-MIMO hardware designs
have been discussed. When studying the signal processing and
system optimization for these XL-MIMO designs, different
analysis frameworks should be considered due to the different
characteristics. For UPA-based XL-MIMO with patch anten-
nas, from the perspective of the whole array, the analysis is
performed in a discrete fashion due to the discrete features of
each antenna element. However, from the perspective of each
antenna element, an accurate analysis scheme is to capture the
EM wave characteristics across each patch antenna element
with a certain physical size. Thus, the analysis framework
for each antenna element should be performed through exact
integrals across each patch antenna element, such as the
computation of channel gain for each antenna element [48],
[94]. Besides, one simplified analysis framework for UPA-
based XL-MIMO with patch antennas can be carried out by
assuming that only one point across the antenna element is
impinged by EM waves [14], [102]. Under this assumption,
UPA-based XL-MIMO with patch antennas reduces to UPA-
based XL-MIMO with point antennas. More interestingly, for
CAP-based XL-MIMO, due to the continuous array aperture,
the analysis should be performed based on the integral across
the whole array. However, when performing the analysis, these
XL-MIMO hardware designs can be mutually linked to each
other as illustrated in Fig. 2.

Based on these significant findings and observations, the re-
searchers can derive insights into XL-MIMO hardware designs
and consider proper XL-MIMO schemes for further research,
such as performance analysis and optimization.

III. CHANNEL MODELING

As discussed above, compared with conventional mMIMO,
XL-MIMO embraces several new features in the hardware
structure. In addition, XL-MIMO increases the number of
antennas and introduces fundamental changes in EM charac-
teristics. The significant increase in the array aperture would
make the receiver be in the near-field region. Thus, several
EM characteristics, which are not considered in conventional
mMIMO, should be investigated, such as the spherical wave
characteristic, spatial non-stationarity, polarization feature, and
mutual coupling feature. Moreover, the channels in XL-MIMO
show different characteristics than conventional mMIMO.
Thus, it is vital to derive suitable channel models to capture the
EM fundamentals of XL-MIMO, which can facilitate signal
processing and performance analysis In this section, we first
discuss several electromagnetic features in XL-MIMO. Then,
we introduce five distance boundaries and three EM regions in
XL-MIMO. Finally, we introduce the major channel modeling,
including LoS channel modeling, NLoS channel modeling, and
hybrid propagation channel modeling.

A. Electromagnetic Characteristics for XL-MIMO

• Spherical Wave Characteristics: With the sharp increase
in the number of antennas for XL-MIMO, the fundamental
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Rayleigh distance

Near-field Far-field

Spherical wave Planar wave

Fig. 3. The EM wave characteristics for the near-field and far-field regions,
which are bounded by the Rayleigh distance. The spherical wave and planar
wave characteristics should be considered in the near-field and far-field
regions, respectively.

EM characteristics are different from those of conventional
mMIMO. Note that the EM region can be generally divided
into far-field and near-field regions, bounded by the Rayleigh
distance [136]. The EM wave characteristics for the near-
field and far-field are depicted in Fig. 3. The array aperture
and the carrier frequency determine the Rayleigh distance,
which will be introduced later in Section III-B. In conventional
mMIMO, the Rayleigh distance can be neglected, due to the
moderate array aperture, so the receivers are usually assumed
to be located in the far-field region. In the far-field region, the
EM wave can be simply modeled based on the plane wave
assumption [14]–[16]. All antenna elements in the array for
the plane wave embrace the same signal amplitude and angle
of arrival/departure (AoA/AoD). Thus, in the far-field based
on the plane-wave characteristics, only the angle characteristic
can be relied on to perform the signal processing and system
design.

However, for XL-MIMO, the significant increase in the
number of antennas and the array aperture size would lead to
the non-negligible Rayleigh distance and make the receiver be
located in the near-field region. Thus, the plane wave assump-
tion in conventional mMIMO is less applicable to the channel
modeling of XL-MIMO. More specifically, the EM wave in
XL-MIMO should be modeled with the vectorial spherical
wave characteristics [15], [45], [71]. For the vectorial spherical
wave, the distances and AoA/AoD between the transmitter an-
tenna elements and the receiver antenna elements would vary
over the antenna array [45], [94]. Thus, for XL-MIMO with a
large aperture, it is necessary to consider spherical wave-based
channel modeling to describe the actual EM characteristics,
which embraces distance and angle properties. The authors
in [94] summarize the fundamental properties for the channel
modeling in the near-field: 1) The propagation distances vary
over the array elements due to the large array aperture; 2) The
antenna areas, determined by the actual aperture and the EM
wave impinged angles, should be considered; 3) Due to the
various EM wave impinged angles, the signal strength losses
caused from the polarization mismatch vary over the array.

• Spatial Non-Stationarity: In conventional mMIMO, the
channel is spatially stationary due to the moderate array
dimension. However, in XL-MIMO, the extremely large array
aperture would result in the spatial non-wide sense stationary
properties [46], [63], [64], [66], [76], [77], [91]. When the
array aperture is extremely large, different regions of the
array would observe the propagation environment in different

(a).  Conventional mMIMO: 
spatial stationarity

(b).  XL-MIMO:
 spatial non-stationarity

Cluster

Visibility 
region

Fig. 4. The diagram for the spatial stationary mMIMO and spatial non-
stationary XL-MIMO.

views, which means that the regions can observe the signal
transmitted from a certain propagation path but with different
powers or the signal transmitted from different propagation
paths. Different terminals can be viewed by different regions of
the array, and each terminal’s power is focused on a particular
region of the array. This particular visible region of the array
from a given terminal is defined as the visibility region (VR) of
this given terminal [46], [77], [137], [138]. The spatial station-
ary mMIMO and spatial non-stationary XL-MIMO diagram
are shown in Fig. 4. For conventional mMIMO, as shown in
Fig. 4 (a), all array elements are visible to the terminals, and
the terminal’s power can spread over the whole array. Thus,
the channel for conventional mMIMO shows the stationary
spatial property. For XL-MIMO, as shown in Fig. 4 (b), it can
be found that the clusters are not visible over the whole array,
and the power of each terminal is predominately focused on
a limited region of the array, i.e., VRs. Thus, the channel for
XL-MIMO embraces the spatial non-stationarity.

The spatial non-stationarity would lead to a departure from
conventional channel models in mMIMO and affect the sys-
tem’s performance. Many works have endeavored to study
the spatial non-stationarity for XL-MIMO [85], [92], [116],
[139]–[141]. For example, the authors in [138] proposed a re-
alistic low-complexity spatial non-stationary channel modeling
structure and verified the feasibility and validity based on the
practical channel measurements and Ray-tracing simulations.
It is worth noting that the channel for a particular terminal
is assumed to be approximately stationary in its VRs and
zero outside the VRs. To derive an analyzable structure, a
simple choice is to decompose the array into a few sub-
arrays, where each sub-array is visible to particular terminals.
For this sub-array scheme, 1 and 0 vectors indicate whether
a particular sub-array is the VR for a given terminal. This
approach is adopted in [64], [76], [77], [140], [141] to make
the spatial non-stationarity-aided XL-MIMO systems more
tractable, which facilitates channel modeling and performance
analysis for XL-MIMO.
• EM Polarization Property: As a well-known property,

EM polarization transverse waves transmit with a particular
oscillation orientation. Most works for conventional mMIMO
omitted this EM polarization property for simplicity. However,
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it is necessary to consider this property since it can capture the
actual EM characteristics in XL-MIMO [142]–[144]. Several
studies have investigated the EM polarization property. In
[144]–[147], dual-polarization was analyzed. More specifi-
cally, the authors in [144] and [145] considered the dual-
polarized UPA with square patch antennas. In [146], the dual-
circularly polarized circular metasurface with various printed
elements was studied. The authors in [147] considered the
dual linear polarization based on the metasurface, where slot-
shaped sub-wavelength unit cells were located across the
metasurface. Moreover, the triple polarization was studied in
[52], [57], [59], [68], [101], [120], modeled by the dyadic
Green’s function. The authors in [57] and [59] considered
the tri-polarized 2D CAP plane. The tri-polarized 1D CAP
line segment was investigated in [52] and [120]. Moreover,
the authors in [68] and [101] studied the UPA with point
antennas over the triple polarization. As observed in [68],
the consideration of multiple polarizations benefited the EDoF
performance compared with that of the single polarization.

• Mutual Coupling Property: When the antenna elements
are closely packed with a small antenna spacing as in XL-
MIMO, the mutual coupling property will significantly affect
the practical design and system performance [67], [148]. The
mutual coupling property denotes that the voltage on each an-
tenna element would depend not only on the incident field but
also on the voltages on other antenna elements [67]. This prop-
erty becomes significant in a scenario with small antenna spac-
ing. The mutual coupling property will deteriorate the channel
and substantially degrade the signal-to-interference-noise ratio
(SINR) and the convergence of processing algorithms. Most
existing works on XL-MIMO and mMIMO omitted the mutual
coupling property. However, studies considered the mutual
coupling property [56], [105], [149], [150]. The authors in [56]
and [149] described the mutual coupling property with the aid
of the mutual coupling matrix and investigated the effects of
the mutual coupling property on the array gain and channel
characteristics. Moreover, the authors in [150] investigated the
effects of the mutual coupling property in the scenario with
fixed physical spaces. The mutual coupling matrix in [150]
was determined by the antenna impedance, load impedance,
and mutual impedance. Besides, various coupling properties,
such as the coupling between antenna elements, the coupling
between users and antenna elements, and the coupling between
users, were comprehensively studied in [105]. The modeling
methods for the mutual coupling effect in these works provide
fundamentals for the further analysis of XL-MIMO systems
considering the mutual coupling property.

Lessons Learned: Four representative electromagnetic char-
acteristics for XL-MIMO have been introduced: spherical
wave characteristics, spatial non-stationarity, EM polarization
property, and mutual coupling property. These characteris-
tics are usually omitted in conventional mMIMO for ease
of analysis. However, for XL-MIMO, these characteristics
have been proven to be vital for accurate modeling and
analysis. Thus, four electromagnetic characteristics have been
thoroughly reviewed, which can embrace vital insights for
the modeling and design of XL-MIMO systems with these
characteristics considered.

B. Distance Boundaries and EM Regions

As discussed above, the receivers in XL-MIMO are very
likely located in the near-field region. The well-known bound-
ary to divide the near-field region and the far-field region is the
Rayleigh distance [15], [45], [71]. Nonetheless, other distance
boundaries and EM regions have also been investigated based
on different principles and perspectives to explore the EM
characteristics in XL-MIMO. In this subsection, we introduce
these distance boundaries and EM regions and provide insights
into the EM characteristics in XL-MIMO.
• Rayleigh Distance: As a well-known distance boundary,

the Rayleigh distance (also called the Fraunhofer distance) is
defined to divide the near-field region and the far-field region.
The Rayleigh distance is motivated by considering the phase
discrepancy caused by the wave’s curvature [48]. The Taylor
expansion can accurately denote the EM wave’s phase. The
phase can be approximated in the far field by its first-order
Taylor expansion. However, this approximation will lead to
phase discrepancy. The maximum allowable phase discrepancy
caused by the most important neglected term, i.e., the second-
order Taylor expansion term, is π/8 [151]. When the largest
phase discrepancy π/8 appears, the distance between the BS
array center and the UE array center is defined as Rayleigh
distance dra. In other words, based on the first-order Taylor
expansion, the largest phase discrepancy larger than π/8 will
appear when the propagation distance is shorter than the
Rayleigh distance. When the communication distance is larger
than the Rayleigh distance, the UE is regarded as being located
in the far-field region (also called Fraunhofer region), where
the planar wave assumption can be implemented. On the
contrary, when the communication distance is smaller than
the Rayleigh distance d < dra, the UE is regarded as being
located in the near-field region, where the spherical wave
should be considered. Besides, the far-field region (also called
Fraunhofer region) is defined as the region farther than the
Rayleigh distance d ⩾ dra.

Regarding the computation of the Rayleigh distance, for
the scenario with XL-MIMO based BS and single-antenna
UE, the Rayleigh distance is dra = 2D2/λ, where D is the
maximum array length of the BS and λ is the wavelength
[15], [151], [152]. Note that D is also called array aperture,
which is the maximum array length for the array. For instance,
for a UPA with side length being LH and LV , the array
aperture is taken to be its diagonal as D =

√
L2
H + L2

V .
Moreover, for the scenario where both the BS and UE are
equipped with XL-MIMO with D1 and D2 array aperture,
respectively, the Rayleigh distance can also be computed as
dra = 2(D1+D2)

2/λ based on the criterion that the maximum
allowable phase discrepancy is π/8 [78], [152]. The distance
in this arrangement is called double-side Rayleigh distance
(DS-RD) [78] since both the transmitter and receiver are XL-
MIMO arrays and thus, the “double-side” is considered.
• Fresnel Distance: When the communication distance

is smaller than the Rayleigh distance, the maximum phase
discrepancy will be larger than π/8 with the first-order Taylor
expansion. This significant phase discrepancy is undesirable in
many scenarios. To further derive a distance boundary smaller



16

Rayleigh distance

Radiating 
near-field

Far-field

Planar wave

Fresnel distance

 Reactive 
near-field

Spherical waveEvanescent wave

Aperture 
Aperture 

Fig. 5. Three EM regions and their respective distance boundaries. In the reactive near-field region, the evanescent wave is the strongest, where the power is
concentrated in the surroundings of the source. In the radiating near-field region, the spherical wave propagation characteristics should be paid attention to.
In the far-field region, the planar wave can be assumed due to the large propagation distance.

than the Rayleigh distance, the second-order Taylor expansion
can be implemented to approximate the phase. When this
approximation is considered, the most critical neglected term,
i.e., the third-order Taylor expansion term, can tolerate only
the maximum allowable phase discrepancy with π/8. Based
on this criterion, for the scenario with XL-MIMO based BS
and single-antenna UE, the Fresnel distance can be computed
as dfr = 0.62

√
D3/λ. Based on the second-order Taylor

expansion, the most significant phase discrepancy π/8 will
appear when the propagation distance is shorter than the
Fresnel distance. Besides, the Fresnel distance for the scenario
where both the BS and UE are equipped with XL-MIMO with
D1 and D2 array aperture, respectively, can be computed as
dfr = 0.62

√
(D1 +D2)3/λ by replacing D by the sum of

D1 and D2 [151].
Specifically, based on the Rayleigh distance and Fresnel

distance, three EM regions are distinguished as shown in Fig.
5. The region, which is farther than the Rayleigh distance
d ⩾ dra, is defined as the far-field region, as discussed above.
The near-field region, which is smaller than the Rayleigh
distance d < dra, can be further divided into the reactive
near-field region and the radiating near-field region, bounded
by the Fresnel distance. More specifically, the region, which
is greater than the Fresnel distance dfr and smaller than the
Rayleigh distance dra, i.e., dfr ⩽ d ⩽ dra, is called the
radiating near-field region or Fresnel region. In this region,
the spherical wave characteristics should be paid attention
to. Furthermore, the region with a distance smaller than the
Fresnel distance dfr, i.e., d ⩽ dfr, is called the reactive near-
field region. In this region, the evanescent waves are dominant
[60], [103], [151]. Note that the channel power for evanescent
waves is concentrated in the surroundings of the transmitter
and thus the evanescent waves cannot be regarded as the
conventional EM waves for propagating since they cannot
be observed at a particular distance of many wavelengths.
For instance, the Rayleigh distance and Fresnel distance are
dra = 267 m and dfr = 10 m, respectively, with the array
aperture D1 = D2 = 1 m, and the carrier frequency of
10 GHz. Thus, the receivers in XL-MIMO systems are very
likely located in the near-field, especially in the radiating near-
field. The majority of works on XL-MIMO focused on the
radiating near-field region. Note that the Fresnel distance is
a further distance boundary to divide the near-field region. It
is also reasonable and tractable to use the classical Rayleigh

distance to distinguish the near-field region with spherical
wave characteristics and the far-field region with planar wave
characteristics due to the small region of the reactive region
and its uncommon evanescent wave characteristics.
• Björnson Distance: A significant distance boundary called

the Björnson distance was proposed in [48] and [153]. The
square UPA-based XL-MIMO with patch antennas was con-
sidered, where N identical square patch antenna elements with
area A were incorporated, serving a point transmitter. The
authors in [48] and [153] defined normalized antenna array
gain, which was the ratio of a receive antenna array gain to
the largest antenna array gain. The largest antenna array gain
was achieved in the far-field region over the perpendicular
planar wave. Thus, the normalized antenna array gain was
close to 1 with the propagation distance increasing to the
Rayleigh distance. Based on the setting in [48] and [153],
the Rayleigh distance could be computed as dra = 2NL2/λ,
where L =

√
2A was the diagonal of each square patch

antenna element.
It is worth noting that the normalized antenna array gain

is close to 1 with a sufficiently large propagation distance.
The authors in [48] and [153] proposed the Björnson distance
as dB = 2

√
NL. The normalized antenna array gain is close

to 1 when the propagation distances are beyond dB . Different
from the Rayleigh distance, the Björnson Distance grows with
the square of the number of antennas

√
N instead of N . For

the scenario with N = 104 and A = (λ/4)2, the authors in
[153] observed that about 96% of the maximum antenna array
gain could be achieved for d = dB and the normalized antenna
array gain was almost 1 when the propagation distance reaches
the Rayleigh distance. The Rayleigh distance is much larger
than the Björnson distance as dra/dB ≈ 35. This interesting
finding implies that the Björnson distance can achieve almost
maximum antenna array gain with a much smaller value
compared with the Rayleigh distance.
• Effective Rayleigh Distance: The classical Rayleigh dis-

tance is introduced from the perspective of the maximum
allowable phase discrepancy, which cannot directly impact the
transmission rate. Accordingly, the array gain can embrace the
near-field effects and directly determine the transmission rate.
Thus, it is necessary to define a straight distance bound to
capture the near-field effects from the perspective of the array
gain. A refined Rayleigh distance was proposed in [58], called
the effective Rayleigh distance.
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TABLE VIII
INSIGHTFUL DISTANCE BOUNDARIES AND THEIR CHARACTERISTICS.

Distance boundary Ref.
Hardware design

architecture
Definition criterion Distance formula Distance characteristics

Rayleigh distance
[78], [151],

[152]

Arbitrary array
aperture for both the

BS and UE

The maximum
allowable phase
discrepancy π/8

based on the
first-order Taylor

expansion

dra =
2(D1+D2)

2

λ

Classical distance
boundary to distinguish
the (radiating) near-field

and far-field regions

Fresnel distance [151], [152]
Arbitrary array

aperture for both the
BS and UE

The maximum
allowable phase
discrepancy π/8

based on the
second-order Taylor

expansion

dfr = 0.62

√
(D1+D2)3

λ

The distance boundary to
distinguish the reactive

near-field and the
radiating near-field

regions

Björnson distance [48], [153]

A square UPA-based
BS with patch

antennas and a point
transmitter

The normalized
antenna array gain

is close to 1.
dB = 2

√
NL

dB can achieve almost
maximum antenna array

gain with a much smaller
value than dra.

Effective Rayleigh
distance

[58]
A ULA-based BS

and a single antenna
UE

The normalized
coherence is greater

than 95%.
deff = ϵ cos2 θ · 2D2

λ

deff is defined
motivated by the

perspective of array gain
and directly influences
the transmission rate.

Uniform power
distance

[45]

A UPA-based BS
with patch antennas
and a single antenna

UE

The power ratio
between the weakest

and strongest
antenna elements is

greater than a
particular threshold.

Numerically computed
based on a particular

threshold

The uniform power
distance embraces both

the amplitude discrepancy
and the phase
discrepancy.

The authors in [58] first proposed a piecewise-far-field
channel model to approximate the near-field channel based on
ULA-based XL-MIMO and a single-antenna UE. The whole
array was divided into multiple sub-arrays with a small number
of antennas each. Furthermore, the UE can be regarded as
located in the far-filed region from the view of each sub-
array, even if the UE is located in the near-field region of
the whole array. Based on this assumption, the piecewise-
far-field channel model was proposed to approximate the
near-field channel. Then, a new metric called the normalized
coherence was defined, determined by the near-filed channel
and its corresponding far-field approximation, which could
directly influence the transmission rate. Correspondingly, the
authors defined the effective Rayleigh distance deff based on
the criterion that the normalized coherence was greater than
95% when the propagation distance was larger than deff .
Accordingly, the authors computed the effective Rayleigh
distance as deff = ϵ cos2(θ) · 2D2/λ, where ϵ = 0.367 and θ
was the angle between the center of ULA-based BS and the
UE. As observed, the effective Rayleigh distance is smaller
than the classical Rayleigh distance and is related to the
direction angle θ. The effective Rayleigh distance is defined
from the perspective of array gain and directly influences the
transmission rate. The effective Rayleigh distance provides es-

sential insights for rate analysis and practical communications
in XL-MIMO.
• Uniform-Power Distance: As discussed above, the

Rayleigh distance concerns the phase discrepancy caused
by the wave’s curvature but neglects the effect of the am-
plitude/power difference. However, the propagation distance
would affect both the phase and amplitude. Thus, the con-
ventional Rayleigh distance to distinguish the near-field and
far-field regions is insufficient. The authors in [83] proposed a
refined distance boundary, called the uniform-power distance
(UPD) dUPD, where UPA-based XL-MIMO with patch anten-
nas served single UE. To construct this distance boundary, the
authors defined the power ratio between the weakest and the
strongest antenna elements. Then, UPD could be numerically
derived as the minimized distance value which made the power
ratio greater than a particular threshold (the authors considered
α = 90% in [83]). The UPD considered both the amplitude
discrepancy and the phase discrepancy and was defined from
the perspective of channel response characteristics and thus
could be relied on to define three field regions with different
channel characteristics [45], which will be carefully introduced
in Sec. III-C2.

We summarize the distance boundaries in Table VIII. It
is worth noting that the first two distance boundaries, i.e.,
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Helmholtz wave equation:

 Dyadic Green’s function:

 Scalar Green’s function:

 Far-field approximation                      :                       

Green’s Function Based 
Channel Modeling

 Complex-Valued Channel 
Response Modeling

Classic Green’s functions

LoS Propagation Channel Modeling

Regions

NUSW

USW

UPW

Amplitude 
variation

Phase 
variation

√

×
×

√

√
×

 Phase component modeling:

 Amplitude component modeling:

     1) Generalized gain based:  [94, eq. (64)]

     2) Free-space pathloss based: [102, eq. (10)]

     3) Reference power based: [158, eq. (3)]

Characteristics

Components modeling

Fig. 6. The diagram for two methods for the LoS propagation channel modeling: Green’s function based channel modeling and complex-valued channel
response representation. j (s) is the current distribution density at any arbitrary transmit point s inside the source volume VS and the electric field e (r) at
any arbitrary receive point r inside the receive volume VR. I3 denotes a 3× 3 identity matrix. κ = 2π/λ is the wavenumber, Z0 = 376.73Ω is the intrinsic
impedance of spatial medium in free space, ∇r is the first-order partial derivative operator with respect to r and p̂ = (r− s) / ∥r− s∥.

Rayleigh distance and Fresnel distance, are shown to be
applicable to arbitrary array aperture for both the BS and
UE. However, the last three distance boundaries, i.e., Björnson
distance, effective Rayleigh distance, and critical distance were
proposed based on particular scenarios, such as the scenario
with a ULA-based BS and a single-antenna UE in [58] and
[83]. Thus, the derivations for these three distance boundaries
based on the generalized scenario with the arbitrary array
aperture at the BS and the UE remain an open problem.

Lessons Learned: To capture the EM characteristics for XL-
MIMO, many distance boundaries can be defined based on
different principles and perspectives as shown in Table VIII.
All these boundaries can give the researchers useful per-
spectives for the design and analysis of XL-MIMO and can
be correspondingly chosen to model the EM characteristics
for XL-MIMO. Besides, to promote further research on XL-
MIMO, other distance boundaries can also be proposed to
describe the EM characteristics for XL-MIMO systems better.
The introduction of these distance boundaries can be motivated
by the distance boundaries reviewed in this part.

C. LoS Propagation Channel Modeling

Due to the extremely large array aperture for XL-MIMO,
which shortens the transmission range, an LoS propagation
link is common between the transmitter and the receiver.
Furthermore, the LoS propagation channel is predominant
in the EM transmission. Thus, it is necessary to derive a
significant LoS propagation channel model based on different
requirements. Besides, the receivers for XL-MIMO are likely
located in the near-field region. Thus, it is necessary to
consider the LoS propagation channel model capturing the
near-field EM characteristics introduced above.

Many studies have modeled the LoS propagation channel.
Among many existing works for XL-MIMO, two major LoS
propagation channel modeling schemes are studied including
Green’s function based channel modeling and the complex-
valued channel response representation channel modeling. The
primary motivation of the Green’s function based channel
modeling scheme is to numerically solve Maxwell’s equations,
which can depict the electric field between each transmit-
ting and receiving point. As for the complex-valued channel
response representation scheme, the complex-valued channel
response between each transmitting and receiving point is con-
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TABLE IX
GREEN’S FUNCTION BASED LOS CHANNEL MODELING. SB-MU AND SB-SU DENOTE THE SCENARIO WITH SINGLE BS AND MULTIPLE USERS AND THE

SCENARIO WITH SINGLE BS AND SINGLE USER, RESPECTIVELY.

Type Ref. Hardware design architecture
Communication

scenario
Characteristics

Dyadic Green’s
function based

[68] UPA with point antennas SB-SU UPA-based transmitter and receiver
[101] UPA with patch antennas SB-MU UPA-based transmitter and receivers

[57], [59] 2D CAP plane SB-MU 2D CAP plane based transmitter and receivers
[52] 1D CAP line segment SB-SU 1D CAP line segment based transmitter and receiver

[120] 1D CAP line segment SB-SU
A practical case with unparallel 1D CAP line

segments with arbitrary orientation and position is
studied.

[126]
1D CAP line segment and

ULA-based XL-MIMO
SB-SU

The half space is considered and an approach to
quickly compute the Green function based on the

Sommerfeld identity is proposed.

[154]
1D CAP line segment and

ULA-based XL-MIMO
SB-SU

Three combinations of the transmitter/receiver with
1D CAP line segment or ULA-based XL-MIMO is

considered and a non-asymptotic analysis is
implemented.

Scalar Green’s
function based

[127] 2D CAP plane
Only one receiver

without any
transmitter

The 4D Fourier plane-wave representation for the
LoS channel is derived based on the Weyl’s identity.

[155] 2D CAP plane SB-SU
The 2D Fourier plane-wave representation for the

LoS channel is derived based on the Weyl’s identity.

[123] 1D CAP line segment SB-SU
Unparallel 1D CAP line segments with arbitrary

orientation and position is considered.

structed, composed of the amplitude and phase components.
These two LoS propagation channel modeling schemes can
provide significant channel models for the analysis of XL-
MIMO.

1) Green’s Function Based Channel Modeling: As illus-
trated in Fig. 6, to characterize the radiated information-
carrying EM waves in space, the homogeneous Helmholtz
wave equation is applied to capture the relationship between
the current distribution density j (s) at any arbitrary transmit
point s inside the source volume VS and the electric field
e (r) at any arbitrary receive point r inside the receive volume
VR. Then, the dyadic Green’s function GD (r, s) ∈ C3×3

is introduced to explicitly express the relationship between
j (s) ∈ C3 and e (r) ∈ C3 [52], [59], [68], [156], [157].
Interestingly, the dyadic Green’s function can be regarded as
the system impulse response. Moreover, when the distance
between the receive point r and the transmit point s is much
greater than the wavelength, i.e., ∥r− s∥ ≫ λ, the dyadic
Green’s function GD reduces to its far-field approximated
form GF (r, s) ∈ C3×3, which is also well-studied [57],
[68]. Note that the dyadic Green’s function includes triple
polarization. Another well-studied Green’s function is the
scalar Green’s function G (r, s), which is a scalar without
the consideration of polarization effects. As shown in Fig.
6, the dyadic Green’s function GD (r, s) can be derived by
multiplying G (r, s) by the operator (I3 + ∇r∇H

r /κ2) [59],
[68].

Meanwhile, as observed in [68, Fig. 3], the consideration
of three polarizations in the dyadic Green’s function based

channel can achieve about one-fold EDoF improvement com-
pared with that of the scalar Green’s function based channel
since the dyadic Green’s function follows a rigorous EM wave-
physics solution. Meanwhile, the dyadic Green’s function can
capture the near-field evanescent wave characteristics with
three polarizations and thus is applicable in near-field based
XL-MIMO systems. However, the scalar Green’s function is
more tractable and easier to analyze compared with the dyadic
Green’s function so that the Green’s function in future research
can be selected based on different research objectives.

The dyadic Green’s function based channel modeling and
the scalar Green’s function based channel modeling have
been widely studied, as summarized in Table IX. For the
dyadic Green’s function based channel modeling, the authors
in [68] and [101] investigated UPA-based XL-MIMO with
point antennas and patch antennas, respectively. The dyadic
Green’s function based channel for 2D CAP plane-based
XL-MIMO was studied in [57] and [59], where both the
transmitter and the receiver were equipped with a 2D CAP
plane. Moreover, the authors in [52] and [120] considered 1D
CAP line segment-based XL-MIMO. A practical case with
unparallel 1D CAP line segments with arbitrary orientation
and position was studied. Besides, the authors in [126] and
[154] considered both ULA-based XL-MIMO and 1D CAP
line segment-based XL-MIMO. The authors in [126] modeled
and analyzed the system from the perspective of the asymptotic
analysis, but a non-asymptotic analysis was implemented in
[154]. Moreover, the authors in [126] considered the half-
space and proposed an approach to quickly compute the Green



20

function in the half-space based on the Sommerfeld identity.
For the scalar Green’s function based channel modeling, the
authors in [128] and [155] 2D CAP plane-based XL-MIMO
and applied the Weyl’s identity to derive the Fourier plane-
wave representation for the scalar Green’s function based LoS
channel. Moreover, 1D CAP line segment-based XL-MIMO
was investigated, where unparallel 1D CAP line segments with
arbitrary orientation and position were studied in [123]. This
Green’s function based channel modeling scheme is motivated
by the actual propagation of EM waves and can capture the
actual EM characteristics, which is advocated by many studies
for the channel modeling of XL-MIMO.

2) Complex-Valued Channel Response Representation: To
derive the LoS channel model, which is tractable and easy to
analyze, the complex-valued channel response representation
scheme is a notable method. The complex-valued channel
response comprises the amplitude component and the phase
component, which would show different characteristics in
different EM regions discussed above. Moreover, many meth-
ods for the modeling of the amplitude component can be
implemented based on different requirements and precisions,
whereas the phase component is usually modeled in a unified
form. With the aid of the complex-valued channel response
modeling scheme, the analysis of XL-MIMO can be performed
in a tractable fashion, and some insightful results can be
obtained.

The complex-valued channel response can model the EM
features between a particular transmitting and receiving point.
Here, the complex-valued channel response would show dif-
ferent features in different field regions bounded by UPD
introduced in Sec. III-B. Based on the UPD in [45], non-
uniform spherical wave (NUSW), uniform spherical wave
(USW), and uniform planar wave (UPW) regions are defined.

• NUSW region: NUSW region denotes the region which is
smaller than the UPD d < dUPD. The channel response
indicates this region’s non-uniform spherical wave fea-
ture. Both the amplitude variation and phase variation
across the receiving aperture are noticeable. Thus, the
exact propagation distance between the particular trans-
mitting and receiving points should be considered in the
modeling of the channel in this region.

• USW region: In this region, which is greater than the
UPD and smaller than the Rayleigh distance dUPD <
d < dra, the channel response indicates the uniform
spherical wave feature, where the phase variation over the
receiving aperture is noticeable, whereas the amplitude
variation over the receiving aperture can be neglected. In
other words, the amplitude is equal across the receiving
aperture. The phase should be precisely modeled based on
the exact propagation distance between the transmitting
and receiving points.

• UPW region: The channel response in this region, d >
dra, displays a uniform planar wave feature, which is
widely applied in conventional mMIMO. Since the prop-
agation distance is much larger than the array aperture,
both amplitude and phase variations across the receiving
aperture can be negligible. Furthermore, the channel
response can be modeled based on the planar wave

assumption, where all antenna elements experience the
same signal amplitude and AoA/AoD. The amplitude
component depends only on the propagation distance
between the center of the receiver and the center of the
transmitter, and the incident angle determines the phase
variation.

Interestingly, among the existing works, three major mod-
eling methods for the amplitude component have been im-
plemented based on different requirements and principles.
In contrast, the phase component is modeled in a unified
style e−j 2πλ ∥r−s∥ as illustrated in the right part of Fig. 6.
Three modeling methods for the amplitude component are
comprehensively discussed as follows.
• Generalized Gain Based Modeling: For the near-field

channel modeling, three fundamental properties are vital: 1)
The propagation distances vary across the array aperture;
2) The effective variable areas should be considered due to
the different incident angles; 3) The losses caused by the
polarization mismatch vary across the array aperture due to
the received signal from various incident angles.

To capture all these fundamental properties, a generalized
channel gain representation can be performed to form the
amplitude component as shown in [48], [94], [153]. The
process of this modeling scheme is summarized in Fig. 7. The
authors in [48], [94], [153] considered one receiver equipped
with UPA-based XL-MIMO with patch antennas at the XY -
plane and one lossless isotropic transmit point antenna. Firstly,
the dyadic Green’s function was introduced to express the
relationship between the current distribution density j (s) and
the electric field e (r) as [94, eq. (59)]. Moreover, a well-
approximated dyadic Green’s function was considered as [94,
eq. (60)], which was tight when the propagation distance was
beyond the Fresnel distance. Secondly, the authors assumed
that the signal traveled along the Z-direction and only the
Y -direction of the j (s) was excited as [94, eq. (61)]. Then,
the Y -direction Green’s function and the projection on the
Z-direction were considered to model the complex-valued
channel coefficient as [94, eq. (63)]. Finally, the complex-
valued channel response for each antenna element was derived
by integrating the channel coefficient across each antenna
element region as [94, eq. (64)]. The above three fundamental
properties for the near-field channel modeling were clearly
presented explicitly in the expression of the channel coefficient
as discussed in [94, eq. (69)].
• Free-Space Pathloss Based Modeling: As discussed above,

the generalized channel gain representation can embrace three
fundamental properties of the near-field channel modeling.
Another choice for the amplitude component is to consider
only the well-known free-space pathloss, which is determined
by the propagation distance and the wavelength. The authors
in [58] and [89] studied the amplitude component for the
scenario with one BS equipped with ULA-based XL-MIMO
and one single-antenna UE based on the free-space path loss.
Furthermore, a piecewise-far-field model with piecewise-linear
phase characteristics was proposed in [58] to approximate
the near-field channel with high accuracy as shown in [58,
Fig. 3]. This approximation was considered as a piecewise-
linearization of the classical near-field channel model. The



21

Y-direction 
Green’s function

Approximated dyadic 
Green’s function as 

[94, eq. (59)]

The projection on 
the Z-direction

Complex-valued 
channel coefficient as 

[94, eq. (63)] 

Generalized gain based 
channel response as 

[94, eq. (64)]

Only the Y-
direction is 

excited

 The signal
travels along the 

Z-direction

Integrate the channel 
coefficient across each 
antenna element region

Fig. 7. The diagram for the generalized gain based modeling method [94].

authors in [95] and [102] considered the scenario with one
BS equipped with UPA-based XL-MIMO with patch antennas
and multiple UEs equipped with multiple and single antennas,
respectively. Due to the far smaller size of each patch antenna
element than the propagation distance between each element
and the UE, the propagation distance was assumed to be
constant across each patch antenna element. Thus, the area
of each patch antenna element was introduced when depicting
the amplitude component as [102, eq. (10)] and [95, eq. (12)].

• Reference Power Based Modeling: As for this useful
modeling method for the amplitude component, the reference
gain was defined as the channel power β0 at the reference
distance d0 = 1 m [83], [98], [158]. Then, the amplitude
component was denoted by the ratio of β0 to the propagation
distance. The authors in [83] and [158] investigated the BS-
equipped ULA-based XL-MIMO and multiple or single UEs,
respectively. Furthermore, UPA-based XL-MIMO with point
antennas was considered in [98] with multiple UEs.

Lessons Learned: For the LoS propagation, the Green func-
tion based modeling [68], [101], [128], [155] and complex-
valued channel response representation schemes [58], [83],
[153] are introduced. As for the Green function based mod-
eling scheme, which is available for both the discrete and
continuous aperture, the diagram and characteristics are illus-
trated in Fig. 6 and Table IX. For the complex-valued channel
response representation scheme, which is available for the dis-
crete aperture, three general modeling schemes are reviewed:
generalized gain based modeling, free-space pathloss based
modeling, and reference power based modeling, which can be
considered based on different criteria and requirements. Note
that the Green function based modeling scheme can capture the
essential EM characteristics, and the complex-valued channel
response representation scheme is more tractable and easier
to analyze. The relationship between these two modeling

schemes is inspired in Fig. 7. Note that the Green’s function
based modeling scheme can accurately capture the EM wave
characteristics.

D. NLoS Propagation Channel Modeling
Due to the complex EM propagation environments, the

NLoS propagation channel is also significant for XL-MIMO.
The stochastic NLoS propagation channel model can represent
a class of scattered propagation environments. When modeling
the NLoS propagation channel, the complex scattered propa-
gation environments and the near-field characteristics should
be considered. Besides, as discussed above, the spatial non-
stationarity should also be investigated since different regions
of the array can experience different propagation parameters
and environments when the array dimension is extremely large.

Several works modeled the NLoS propagation channel.
Among these works, two NLoS propagation channel modeling
schemes can be summarized: Fourier plane-wave representa-
tion based modeling and array response vector representation
based modeling. More specifically, the 4D Fourier plane-wave
representation for the NLoS propagation channel response over
arbitrary scattering mechanisms can be derived based on the
theory that every spherical wave can be decomposed exactly
into an infinite number of plane waves [159], [160]. On the
other hand, the NLoS channel response can be represented
by the superposition of a particular number of array response
vectors or the array response matrices determined by the array
response vectors. The array response vectors can incorporate
the spherical wave characteristics in the near-field region.

1) Fourier Plane-Wave Representation Based Modeling:
Based on the theory that every spherical wave can be decom-
posed exactly into an infinite number of plane waves, one
representative NLoS propagation channel modeling method,
i.e., Fourier Plane-Wave Representation can be adopted [47],
[128], [155] as illustrated in Fig. 8. Firstly, the 2D Fourier
plane-wave representation can represent the incident field
based on the Weyl’s identity [160]. Then, the received field
does not need any external stimulus and is thus viewed as
locally source-free. As a result, the received field obeys the
homogeneous Helmholtz equation and can also be denoted
by the 2D Fourier plane-wave representation. Moreover, these
two 2D Fourier plane-wave representations can be coupled
through a scattering kernel integral operator, which reflects
the scattering mechanism and links all incident plane waves
and every received plane wave. Thus, a 4D Fourier plane-wave
representation for the NLoS propagation channel response over
arbitrary scattering mechanisms can be given through three
parts:

• Source response: depicts the excitation current at the
particular transmitted point to the certain transmit propa-
gation direction, which is determined by the wavenumber
of the transmitted field and the coordinate of the particular
transmitted point;

• Received response: projects the certain received propa-
gation direction to the induced current at an arbitrary
received point, which is determined by the wavenumber
of the received field and the coordinate of the particular
received point;
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 Source response:  Receive response:

NLoS Propagation 
Channel Modeling

 Angular response:

 Power spectral density:

 Random characteristics:

Fourier Plane-Wave Representation Based Modeling

 Fourier plane-wave representation based channel:

 Integration region:

Fig. 8. The diagram for the Fourier plane-wave representation based NLoS channel modeling method. The Fourier plane-wave representation is composed
of three parts: source response, received response, and angular response. κ and k are the corresponding wave vectors. S (kx, ky , κx, κy) denotes the power
spectral density and W (kx, ky , κx, κy) represents the random characteristics.

• Angular response: maps each source propagation direc-
tion onto each received propagation direction. It can
also be viewed to depict the channel coupling between
every pair of the transmitted propagation direction and
the received propagation direction, which is composed of
the 4D power spectral density, capturing the scattering
propagation environment and the random characteristics
for the channel.

Furthermore, the discrete Fourier plane-wave series expansion
can be applied by discretizing the 4D Fourier plane-wave
representation based channel model to obtain the tractable and
easily analyzed channel. Relying on the fact that the angular
response is non-zero only within the particular wavenumber
support, the discretized plane waves are defined within the
lattice ellipses, and the discrete Fourier plane-wave series
expansion can be derived by sampling on the finite integra-
tion area. Note that the approximation error reduces as the
appropriate array size becomes large [47], [128], [155].

The authors in [47] and [155] provided the above fundamen-
tal theories for the Fourier plane-wave representation based
channel modeling with one CAP-based transmitter and one
CAP-based receiver. The authors in [53] extended the scenario
in [47] and [155] for the single UE to the scenario, where the
BS and multiple UEs were all equipped with UPA-based XL-
MIMO with patch antennas. It was found that the number

of antennas per plane should be larger than the number of
sampling lattice ellipses to fully guarantee to capture the EM
characteristics. Moreover, based on [47] and [53], the Fourier
plane-wave representation based channel modeling for the
scenario with multiple BSs and UEs was investigated in [161]
by assuming that the random characteristics for each BS-UE
path were independent. Besides, the authors in [162] proposed
an EM-compliant channel model based on the Fourier plane-
wave series expansion based model in [47], where angular
power spectrum, the distortion of antenna patterns, and the
decrease of antenna efficiency were jointly investigated to
derive a more practical channel model for XL-MIMO. All
the above works focus on small-scale fading but neglect the
effect of large-scale fading gain [163]. Thus, it would be
interesting to consider the Fourier plane-wave representation
based channel modeling with large-scale fading in the future.

2) Array Response Vector Representation Based Modeling:
Another promising NLoS channel modeling method is the
array response vector representation based modeling. In this
modeling method, the NLoS channel response is denoted by
the superposition of a particular number of array response
vectors or the array response matrices determined by the array
response vectors [69], [78], [88], [93], [117], [118], [130]. For
convenience, we discuss the scenario where the transmitter
and the receiver are equipped with ULA-based XL-MIMO.
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Array Response Vector Representation Based Modeling

 Complex channel response:

 Array response at transmitter:

 Array response at receiver:

 Complex channel response:

 Array response at transmitter:

 Array response at receiver:

Near-field Far-field

Fig. 9. Illustration of the array response vector representation based NLoS channel modeling. N1, N2, and L denote the numbers of antennas for the
transmitter array and the receiver array, and the number of paths, respectively. For the near-field, θlt and θlr denote the angle of the l-th path of the transmitter
and receiver, respectively. dlt and dlr represent the distances between the l-th scatter and the center of the antenna array of the transmitter and receiver,
respectively. dlt (n1) and dlr (n2) are the distances between the l-th scatter and the n1-th element of the transmitter array and n2-th element of the receiver
array, respectively. For the far-field, θAOD

l and θAOA
l are the AoD and AoA for the l-th path, respectively. d is the antenna spacing.

In this scenario, the NLoS channel comprises several array
response matrices. Each array response matrix is determined
by the complex NLoS path gain, the array response vector at
the transmitter, and the array response vector at the receiver,
as illustrated in Fig. 9. In the near-field, the array response
vector is determined by both the AoA/AoD and the distance,
which can model the spherical wave characteristics. However,
in the far-field, the array response vector is only determined
by the AoA/AoD rather than the distance.

The authors in [69] modeled the NLoS channel for the
scenario with one BS equipped with ULA-based XL-MIMO
and one single-antenna UE based on the near-field array
response vector representation. Then, the near-field polar-
domain representation for the near-field array response chan-
nel was proposed, which provided fundamental preliminaries
for the channel estimation for XL-MIMO. Furthermore, the
authors in [78] investigated the NLoS channel for the sce-
nario where both the BS and UE were equipped with ULA-
based XL-MIMO. The double-side near-field channel model
was accordingly defined. Moreover, the authors in [117] and
[118] modeled the NLoS channel based on the far-field array
response vector representation.

Lessons Learned: To capture the fundamentals of the
channel modeling for the LoS or NLoS propagation, a tutorial
is given in Fig. 10, which can provide insights for the chan-
nel modeling for XL-MIMO [14]. Certain channel modeling

schemes can be chosen based on this tutorial. Firstly, the
channel propagation type, including the LoS propagation and
the NLoS propagation, should be chosen.

For the LoS propagation channel modeling, two major mod-
eling methods based on different modeling ideas can be stud-
ied: Green’s function based modeling method and complex-
valued channel response representation method. The Green’s
function based modeling method is derived by numerically
solving Maxwell’s equations, which can capture the actual EM
characteristics and is available for both the discrete aperture
and the continuous aperture. Moreover, the dyadic Green’s
function and the scalar Green’s function, distinguished by
studying the polarization characteristics or not, can be applied
by referring to [59, eq. (5)], [68, eq. (6)] and [68, eq. (2)], [155,
eq. (6)], respectively. The complex-valued channel response
representation method is adopted by simply considering the
amplitude component and the phase component, which is only
available for the discrete aperture but is tractable and easy to
analyze. Relying on this method, the characteristics for three
classical EM regions can be indicated. Note that the phase
component is usually modeled in a unified way and three major
methods for the modeling of the amplitude component can be
applied: generalized gain based method [94, eq. (64)], free-
space pathloss based method [102, eq. (10)], and reference
power based method [158, eq. (3)].

For the NLoS propagation channel modeling, two major
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Fig. 10. Fundamentals of the channel modeling aspects for XL-MIMO.

modeling methods can be adopted by the characteristics for
scattering mechanisms. A novel Fourier plane-wave represen-
tation based modeling method can be applied to arbitrary
scattering mechanisms. This method can be applied to both
the discrete aperture and the continuous aperture, which is
composed of the source, receive, and angular responses, re-
ferring to [155, Theorem 1]. For the array response vector
representation based method, the array response contributed
by a particular number of path components can be derived,
which holds only for the discrete aperture and can capture the
spherical wave characteristics [78, eq. (8)].

E. Hybrid Propagation Channel Modeling

Channel modeling for the LoS propagation and the NLoS
propagation has been well reviewed above. These chan-
nel modeling schemes are exact/approximate solutions to
Maxwell’s equations in specific scenarios. In practice, it is also
possible to have a hybrid propagation channel that embraces
both the LoS and NLoS propagation links. Thus, it is necessary
to investigate the accurate and tractable channel modeling
schemes for the hybrid propagation path channel. Moreover,
channel modeling schemes assume that all scatters are either
located in the far-field or near-field regions. In practice, a
more generalized hybrid field should be developed, where
some scatters are located in the near-field region, and others
are located in the far-field region. Thus, it is necessary to
investigate these two hybrid propagation channel modeling
schemes to capture practical channel characteristics in XL-
MIMO.

1) Hybrid Propagation Path Channel Modeling: Many
works have studied hybrid propagation channel modeling.
Two major modeling schemes include the complex-valued
channel response representation based modeling scheme and
the Fourier plane-wave representation based modeling scheme.

• Complex-Valued Channel Response Based Modeling: One
promising modeling scheme is the complex-valued channel
response based modeling scheme. For this modeling scheme,

Algorithm 1 A tutorial to generate the hybrid propagation
path channel based on the complex-valued channel response
representation method.
Input: Geometric characteristics, position coordinates, and

EM parameters for XL-MIMO schemes.
Output: Hybrid propagation path channel based on the

complex-valued channel response representation.
1: for The complex-valued channel response representation

method do
2: LoS propagation component: Generate the LoS prop-

agation component in the complex-valued response form
as [78, eq. (25)].

3: NLoS propagation component: Generate the NLoS
propagation component based on the complex-valued ar-
ray response representation as [78, eq. (21)].

4: Hybrid propagation path channel: Generate the
hybrid propagation path channel by the combination of
above two components as [78, eq. (27)].

the LoS propagation component is modeled in the complex-
valued response form, and the array response vector represen-
tation based modeling scheme depicts the NLoS propagation
component with a particular number of scattering paths. Thus,
the hybrid propagation path channel based on the complex-
valued channel response modeling scheme can be derived by
combining the above two components [78]. For the scenario
where both the BS and the UE were equipped with ULA-
based XL-MIMO in [78], the authors firstly modeled the
LoS propagation component as the complex-valued response
form as [78, eq. (25)]. Furthermore, the NLoS propagation
component could also be modeled in the array response vector
representation as [78, eq. (21)]. Thus, the hybrid propagation
path channel was derived as [78, eq. (27)]. To explain the hy-
brid propagation path channel modeling based on the complex-
valued channel response representation, we provide a tutorial
as Algorithm 1.
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Algorithm 2 A tutorial to generate the hybrid propagation
path channel based on the Fourier plane-wave representation
method.
Input: Geometric characteristics, position coordinates, and

EM parameters for XL-MIMO schemes.
Output: Hybrid propagation path channel based on the

Fourier plane-wave representation method.
1: for The Fourier plane-wave representation method do
2: LoS propagation component: Generate the LoS prop-

agation component by the 2D Fourier plane-wave repre-
sentation method as [155, Lemma 1].

3: NLoS propagation component: Generate the NLoS
propagation component based on the 4D Fourier plane-
wave representation method as [155, Theorem 1].

4: Hybrid propagation path channel: Generate the
hybrid propagation path channel by the combination of
the above two components.

• Fourier Plane-Wave Representation Based Modeling:
Another promising modeling scheme can be implemented
with Fourier plane-wave representation. The Fourier plane-
wave representation method relies on that every spherical
wave can be exactly into an infinite number of plane waves.
Accordingly, both the LoS and NLoS propagation channels
can be incorporated based on this modeling scheme [155]. As
studied in [155], the LoS propagation channel could be firstly
derived based on the scalar Green’s function through [155, eq.
(5)]. Then, the scalar Green’s function based channel could
be exactly given by the 2D Fourier plane-wave representation
based on the Weyl’s identity as [155, Lemma 1]. Moreover,
the NLoS propagation could also be derived based on the 4D
Fourier plane-wave representation as [155, Theorem 1], which
had also been discussed above in detail. Thus, the hybrid
propagation channel can be derived by combining these two
components in a unified manner. To better demonstrate this
modeling scheme, a tutorial, describing the hybrid propaga-
tion path channel modeling based on the Fourier plane-wave
representation method, is given in Algorithm 2.

2) Hybrid-Field Channel Modeling: In practical commu-
nications, some of the scatters are located in the near-field
region and others are located in the far-field region. Thus,
to capture this practical channel characteristic, the concept
of hybrid-field channel has been introduced. The authors in
[74], [164] investigated the hybrid-field channel model, where
the BS was equipped with ULA-based XL-MIMO, and the
UE was equipped with a single antenna. Here, the NLoS
channel was modeled based on the array response vector
representation based modeling in [69], where both the scatters
located in the near-field and the scatters located in the far-field
were considered. More specifically, the channel components
contributed by the scatters located in the near-field and those
contributed by the other scatters were modeled separately
based on the array response vector representation for the near
and far fields, respectively. Then, the hybrid-field channel
could be represented by the combination of near-field and
far-field channel components, where an adjustable parameter
was also introduced to control the proportion of two types of

path components. This hybrid-field channel model provides
fundamentals for hybrid-field based communications.

Lessons Learned: We discuss the hybrid propagation chan-
nel modeling from the perspective of the hybrid propagation
path channel modeling and hybrid-field channel modeling. The
hybrid propagation path channel modeling embraces both the
LoS and NLoS propagation links. Two major methods can
be implemented to model the hybrid propagation path chan-
nel: complex-valued channel response based modeling and
Fourier plane-wave representation based modeling. Moreover,
we provide two useful tutorials to inspire the hybrid channel
modeling as shown in Algorithm 1 and Algorithm 2.

Based on these observations and insights, the EM charac-
teristics in XL-MIMO, which differ from that of conventional
mMIMO, are discussed. More importantly, the fundamentals
for channel modeling are thoroughly reviewed, which are
useful for performance analysis and signal processing design
in XL-MIMO and provide vital guidance for future research
on XL-MIMO.

IV. SIGNAL PROCESSING

Next, we focus on signal processing issues for XL-MIMO,
in which we should capture the channel characteristics for
XL-MIMO as presented in the previous sections to design
efficient signal processing schemes. More specifically, channel
estimation, beamforming scheme design, and deep learning-
empowered processing are reviewed in this section. Again,
due to the extremely large array aperture, signal processing
schemes for XL-MIMO systems would involve very high
computational complexity. Thus, to promote practical im-
plementation and meet the green communication demands
for future communications, low-complexity signal processing
schemes for XL-MIMO should be developed. Thus, in this
section, we summarize and motivate low-complexity signal
processing schemes for XL-MIMO. Many low-complexity sig-
nal processing schemes with different channel characteristics,
design ideas, and design algorithms are reviewed.

A. Channel Estimation
By deploying an extremely large number of antennas, XL-

MIMO can achieve high DoF and spectral efficiency perfor-
mance. However, the benefits of XL-MIMO performance im-
provement rely on the channel state information (CSI) quality.
Therefore, it is important to investigate efficient and applicable
channel estimation schemes. Again, in XL-MIMO, several
near-field features should be considered in channel estimation,
e.g., spherical wave characteristics, spatial non-stationarity,
EM polarization property, and mutual coupling property. In
this subsection, we introduce the channel estimation schemes
for XL-MIMO from the perspective of polar domain based,
parameter based, joint activity and channel estimation, low-
complexity based, and machine learning based channel esti-
mation schemes as summarized in Table X. However, although
some channel estimation schemes consider the characteristics
for XL-MIMO channel, the computational complexity of these
schemes is also too high. Therefore, it is very meaningful
to develop and study channel estimation schemes with high
accuracy and acceptable complexity.
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TABLE X
CHARACTERISTICS FOR THE CHANNEL ESTIMATION SCHEMES FOR XL-MIMO. ULA, UPA (PATCH ANTENNAS), AND UPA (POINT ANTENNAS) DENOTE

ULA-BASED XL-MIMO, UPA-BASED XL-MIMO WITH PATCH ANTENNAS, AND UPA-BASED XL-MIMO WITH POINT ANTENNAS, RESPECTIVELY.

Classification Ref. Channel model
Channel

characteristics
Hardware

design

Channel
estimation
algorithm

Algorithm characteristics

Polar domain
based schemes

[69]
Array response

vector representation
LoS + NLoS ULA P-SOMP, P-SIGW

Based on the sparsity in the polar
domain and CS algorithms

[78]
Array response

vector representation
LoS + NLoS,

DS-NF
ULA

Hierarchical
parameter and

OMP-based
algorithm

The LoS and NLoS path
components are estimated

separately.

[74]
Array response

vector representation
NLoS,

hybrid-field
ULA HF-OMP

Based on the sparsity in the polar
domain and CS algorithms

[138]
Array response

vector representation
LoS + NLoS ULA DL-OMP

Joint dictionary learning and sparse
recovery based channel estimation

methods

Parameter based
schemes

[96]
Pathloss based
channel model

LoS
UPA (patch
antennas)

Iterative Parametric
algorithm

Exploiting the specific structure of
the radiated beams generated by

the continuous aperture

[76]
Array response

vector representation
NLoS, spatial

non-stationarity
ULA

Subarray-Wise
algorithm,

Scatterer-Wise
algorithm

Based on a refined OMP algorithm
and the structure of sub-array and

scatterer

[89]
Free-space pathloss

based model
LoS ULA

Near-field rainbow
based beam training

Based on the controllable beam
split effect and the beam training

JACE
schemes

[116]
Bernoulli-Gaussian

random variable
NLoS, spatial

non-stationarity
UPA (patch
antennas)

Bilinear Message
Passing for JACE

Based on the bilinear Bayesian
inference framework

[63]
Bernoulli-Gaussian

random variable
NLoS, spatial

non-stationarity
UPA (patch
antennas)

JACE Algorithm
Based on Gaussian approximation

and bilinear inference

Low-complexity
schemes

[51]
Array response

vector representation
NLoS

UPA (patch
antennas)

RS-LS
Exploiting the array geometry and
utilizing the compact eigenvalue

decomposition

[165]
Frequency domain
channel response

NLoS, spatial
non-stationarity

ULA Turbo-OAMP
Based on the LBP and OAMP

algorithm

Machine
learning based

schemes

[166]
Array response

vector representation
LoS + NLoS ULA

P-MRDN,
P-MSRDN

Based on the sparsity in the polar
domain, the MRDN, and the ASPP

architecture

[167]
Complex-valued
channel response

LoS + NLoS
UPA (patch
antennas)

A two-phase
HSPM algorithm

Based on the DCNN network and
relations of parameters between the
reference and remaining sub-arrays

[168]
Complex-valued
channel response

LoS + NLoS,
hybrid-field

UPA (point
antennas)

FPN based schemes
Based on existing iterative channel

estimators with each iteration
implemented based on an FPN

1) Polar Domain Based Channel Estimation Schemes:
In conventional mMIMO systems, compressive sensing (CS)
algorithms can achieve high normalized mean square error
(NMSE) performance by utilizing the sparsity of the angular-
domain channel. Specifically, the orthogonal matching pursuit
(OMP) algorithm transforms the signal into the angular-
domain representation to estimate the channel based on the
angular-domain sparsity. However, different from conventional
mMIMO systems, the channels for XL-MIMO systems do not
exhibit sparsity in the angular domain, due to different elec-
tromagnetic characteristics [69]. Then, the existing angular-

domain based CS algorithms cannot be directly applied to
XL-MIMO. Moreover, there are several CS algorithms that
embrace spherical wave characteristics based on the polar
domain in the near-field.

The authors in [69] proposed a polar-domain representa-
tion of the XL-MIMO channel based on the array response
vector, which fully captured the near-field spherical wave
characteristics. Considering both the angular and distance
information, this channel representation exhibited sparsity
in the polar domain. Then, the polar-domain simultaneous
orthogonal matching pursuit (P-SOMP) algorithm was inves-
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tigated to obtain both the LoS and NLoS channel estimates.
Furthermore, the polar-domain simultaneous iterative gridless
weighted (P-SIGW) algorithm, which directly estimated the
near-field channel parameters, was proposed to improve the
estimation accuracy. Notably, the P-SOMP and P-SIGW al-
gorithms outperformed existing angular-domain based SOMP
and SIGW algorithms, which relied on the angular-domain
channel sparsity.

The authors in [78] extended the single-side near-field (SS-
NF) in [69] to the double-side near-field (DS-NF) where both
the BS and the UE were equipped with ULA-based XL-MIMO
and were located in each other’s near-field region. The authors
proposed a DS-NF channel estimation scheme based on the
DS-NF channel model where the LoS path component was
modeled under the geometric free space assumption and the
NLoS path components are modeled by the near-field array
response vector. In the DS-NF channel estimation scheme,
a hierarchical parameter estimation algorithm was proposed
to estimate the LoS path component, and an OMP based
algorithm was utilized to estimate NLoS path components.
It was numerically demonstrated that the DS-NF scheme
achieved the best performance out of both the SS-NF OMP
scheme in [69] and the conventional far-field OMP scheme.

An array response vector based hybrid-field channel model,
which considered both the far-field and near-field path compo-
nents, was investigated in [74]. By exploiting the hybrid-field
channel feature and the channel sparsity in the polar domain,
the hybrid-field OMP (HF-OMP) channel estimation scheme
was utilized for the far-field and near-field path component es-
timation. Simulation results showed that the proposed hybrid-
field OMP scheme could achieve better NMSE performance
than the far-field and near-field OMP algorithms.

A dictionary, called the polar-domain transform matrix, was
constructed to fully capture the near-field channel sparsity in
the polar domain by considering both the angular and distance
information [69], [74], [78]. However, this transformation
resulted in a high storage requirement and a high computa-
tional complexity [138]. Furthermore, the authors in [138] pro-
posed a distance-parameterized angular-domain sparse near-
field channel representation model over array response vector
based channels. Based on the fact that the angle and distance
were coupled, the size of the dictionary in [138] only de-
pended on the angular resolution instead of the resolutions
of both the angle and the distance. Furthermore, a dictionary
learning orthogonal matching pursuit (DL-OMP) algorithm
was investigated, which estimated the array response vector
and updated the dictionary iteratively. The DL-OMP algorithm
outperformed the uniform and nonuniform P-OMP algorithms
from [69] in terms of not only the NMSE performances but
also both the angle and distance estimation accuracy.

2) Parameter Based Channel Estimation Schemes: Differ-
ent from the polar domain based channel estimation schemes,
which directly recover the XL-MIMO channel, the parameter
based channel estimation schemes aim to estimate the key
parameters. More specifically, to fully capture the spherical
wave characteristics, the parameter based channel estimation
schemes first estimate the angle and the distance parameters.
Then, these two parameters are utilized to reconstruct the XL-

MIMO channel.
A pathloss based channel model dominated by an LoS path

was proposed in [96] over millimeter and terahertz (THz)
wave bands. By simplifying the channel for the far-field, there
were two parameters needed to be estimated. The near-field
channel could be represented as the superposition of the far-
field channels by partitioning the continuous aperture into tiles
which holds the far-field assumption. Moreover, an iterative
channel estimation algorithm was proposed by exploiting the
specific structure of the radiated beams generated by the
continuous aperture. It was verified that the training overhead
and computational complexity of the proposed estimation
scheme did not scale with the number of antennas. Moreover,
the proposed scheme outperformed benchmark schemes, es-
pecially in the poor scattering environment.

To explore the near-field spatial non-stationarity, an array
response vector representation of XL-MIMO non-stationary
channel was described through a mapping between sub-arrays
and scatterers in [76]. Based on the refined OMP algorithm,
a subarray-wise scheme was proposed for channel estimation
by iteratively estimating and refining the position information.
Moreover, a scatterer-wise channel estimation scheme was
investigated by positioning each scatterer and detecting its
visibility regions to further improve accuracy. It was nu-
merically demonstrated that the subarray-wise method could
recover the channel with low complexity, and the scatterer-
wise method could accurately identify almost all the mappings
between sub-arrays and scatterers. However, the scatterer-wise
method utilized the multiple sub-array gain to estimate the
positions and VRs of the scatters, thereby achieving much
more accurate positioning and mapping results. Therefore, the
subarray-wise method was suitable for the low-complexity
subarray-based transceiver design. The scatterer-wise method
entailed a substantially efficient and comprehensive globalized
transceiver design.

The authors in [89] proposed a fast wideband beam training
scheme by utilizing the near-field beam split effect in the
wideband XL-MIMO. By controlling the near-field beam split
effect, the proposed scheme could enable beams at differ-
ent frequencies to be focused on different desired locations.
Furthermore, the distance and angle information could be
obtained by the proposed beam training scheme to estimate
the complex channel response of the XL-MIMO system. It
was demonstrated that the proposed scheme could realize fast
near-field CSI acquisition with a very low training overhead.

3) Joint Activity and Channel Estimation Schemes: In the
joint activity and channel estimation (JACE) schemes, not
only spatial non-stationarity but also user activity patterns
are considered. Due to the spatial non-stationarity, XL-MIMO
forms VRs, which leads to a subarray-wise sparse structure of
the channel. These schemes suppose that the user activities are
operated in grant-free access mode, in which only a fraction
of the potential users is active during a given time slot.
Therefore, the channel possesses a doubly-sparse and user-
specific structure which can be modeled by a nested Bernoulli-
Gaussian distribution.

A generalized gain based model called the nested Bernoulli-
Gaussian model was proposed to capture the spatial non-
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stationarity, user activity patterns and channel fading in the
grant-free XL-MIMO system in [116]. Based on the nested
Bernoulli-Gaussian model, the authors proposed a novel bi-
linear inference-based JACE algorithm by decomposing the
nested Bernoulli-Gaussian random variable into a bilinear
inference problem of two independent random quantities.
The proposed algorithm was effective for grant-free access
and could achieve the genie-aided ideal estimation perfor-
mance. Furthermore, different from the most closely-related
bilinear generalized approximate message passing algorithm,
the authors in [63] employed the belief combining strategy
tailored for this specific bilinear problem and proposed an
iterative JACE algorithm. To further enhance the practicality
of the proposed algorithm, an EM-based auto-parameterization
method was proposed to estimate instantaneous sub-array
activity factors in [63]. The effectiveness of the proposed
algorithm was revealed by the performance assessments via
Monte-Carlo simulations in the NMSE and activity error rate
(AER) performance.

4) Low-Complexity Channel Estimation Schemes: Channel
estimation schemes for XL-MIMO suffer from high compu-
tational complexity due to the sharp increase in the number
of antennas. Therefore, the trade-off between performance
and complexity is an important challenge. The conventional
minimum mean-squared error (MMSE) channel estimation is
rarely adopted in XL-MIMO due to its high complexity. Then,
the conventional least-squares (LS) scheme, which requires
no prior statistical information, was used to estimate the
channel of XL-MIMO with low computational complexity
in [85], [169]. However, the LS estimation scheme achieved
a poor performance at the low signal-to-noise-ratio (SNR)
scenarios. Thus, it is necessary to investigate low-complexity
channel estimation schemes with high accuracy and acceptable
complexity. Next, we introduce two low-complexity schemes
in detail.

The authors in [51] modeled the channel by providing an
exact integral expression for the spatial correlation matrix
with non-isotropic scattering and directive antennas where the
BS was equipped with UPA-based XL-MIMO. A novel and
low-complexity channel estimation scheme, called reduced-
subspace LS (RS-LS), was proposed based on the MMSE
and the LS estimation schemes. The proposed RS-LS scheme
utilized the compact eigenvalue decomposition of the spatial
correlation matrix and exploited the array geometry. To cir-
cumvent the knowledge of the correlation matrix of a particular
UE, the authors utilized the compact eigenvalue decomposition
of the correlation matrix in an isotropic scattering environ-
ment to construct the conservative RS-LS estimator. It was
shown that the RS-LS scheme outperformed the conventional
statistics-unaware LS scheme and yielded similar NMSE per-
formance as the MMSE estimation scheme with increasing
SNR at a much lower complexity. Moreover, the conservative
RS-LS estimator achieved a 6 dB NMSE gain lower than
LS but still had about 5 dB NMSE performance gap higher
than RS-LS due to the higher rank of its applied isotropic
correlation matrix than the actual correlation matrix.

The uplink channel of a BS using ULA-based XL-MIMO
was modeled as a Bayesian network based on the generalized

gain in XL-MIMO systems in [165]. The proposed model cap-
tured the structured sparsity in the antenna-delay domain with
the non-stationary property. Then, a low-complexity channel
estimation scheme called the turbo orthogonal approximate
message passing (turbo-OAMP) algorithm was proposed to
efficiently perform the Bayesian inference. The turbo-OAMP
consisted of a linear minimum-mean-square-error (LMMSE)
estimator and a non-linear MMSE estimator designed based
on the loopy belief propagation (LBP) and OAMP. Note that
the turbo-OAMP employed the LBP to achieve the approx-
imate Bayesian inference instead of the MMSE module in
conventional OAMP. In contrast to the existing state-of-the-art
baselines, such as the turbo-OAMP with i.i.d. Bernoulli Gaus-
sian prior [170], sub-array OMP [76] and variational Bayesian
inference (VBI) with the Dirichlet process [171], the proposed
turbo-OAMP algorithm achieved better NMSE performance
with substantially reduced pilot overheads, especially in low
SNR scenarios.

5) Machine Learning Based Channel Estimation Schemes:
In XL-MIMO systems, the aforementioned channel estimation
schemes consider the near-field features and achieve better
NMSE performance in their scenarios compared with the con-
ventional schemes. However, some estimation schemes cannot
achieve satisfactory estimation accuracy. The high accuracy of
some schemes comes at a cost of higher complexity. Recently,
machine learning based channel estimation schemes have
been explored to excavate the characteristics for the channel
with both improved channel estimation performance and low
complexity. Machine learning-based channel estimation meth-
ods can be divided into two categories: model-driven [172],
[173] and data-driven [174], [175]. The existing model-driven
methods are more applicable and tractable than the data-driven
ones with the preferable interpretability, simpler modeling, and
lower complexity for training [172]. Three practical residual
neural networks were proposed to obtain accurate channel state
information in the RIS-aided mmWave communication system
in [176]. The proposed neural network models leveraged the
low-rank structure of RIS cascaded channels based on the
similarity between the image noise reduction and channel
estimation. Moreover, the proposed models could achieve bet-
ter NMSE performance than conventional CS algorithms and
existing conventional channel estimation methods (e.g., the
alternating direction method of multipliers and the denoising
convolution neural network) with lower complexity.

The authors in [166] investigated an XL-MIMO system with
a ULA-based BS and a single-antenna UE. The polar-domain
representation of the XL-MIMO channel, which was based
on the array response vector in [69], was considered. Based
on the multiple residual dense network (MRDN) architecture
[176], a polar-domain multiple residual dense network (P-
MRDN)-based channel estimation scheme was proposed to
utilize the channel sparsity in the polar-domain in XL-MIMO
systems. Furthermore, a polar-domain multi-scale residual
dense network (P-MSRDN)-based channel estimation scheme
was proposed by exploiting the multi-scale feature integration
capabilities of atrous spatial pyramid pooling (ASPP) in [177].
Notably, the proposed P-MRDN and P-MSRDN outperformed
the LS method, the orthogonal matching pursuit (OMP) al-
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gorithm [178], the polar-OMP (P-OMP) method [74], and
the MRDN [176]. Although the proposed P-MRDN and P-
MSRDN had higher computational complexity than the P-
OMP, all these schemes involved a similar order of magnitude
of running time.

The authors in [168] and [179] investigated the THz XL-
MIMO system with a UPA-based BS and a single-antenna
UE. Moreover, the THz hybrid-field channel was considered,
where the complex-valued channel response modeling scheme
was implemented. A unified and theoretical DL-based channel
estimation framework called fixed point networks (FPNs) was
proposed. The proposed framework leveraged existing iterative
channel estimators, where each iteration was implemented
based on an FPN. It was shown that the proposed schemes
perfectly matched the XL-MIMO scenario due to the low com-
plexity and the scalability of other heavily out-of-distribution
scenarios.

In the THz XL-MIMO system, a complex-valued channel
response based model, called hybrid spherical- and planar-
wave channel model (HSPM), was investigated by accounting
for the spherical-wave propagation and the parameter-shift
effect among sub-arrays in [167]. Then, a two-phase channel
estimation scheme was proposed to capture the features of the
HSPM. In the first phase, a deep convolutional neural network
(DCNN) was developed to estimate the channel paraments of
the HSPM with reduced complexity and high estimation accu-
racy. In the second phase, the proposed algorithm explored the
relations of parameters between the reference and remaining
sub-arrays. Then, the channel matrix was reconstructed for the
channel estimation. Compared to other methods, such as the
OMP [180], AMP [181], CNN [182], and RNN [183] based
methods, the proposed channel estimation scheme converged
fast and achieved high accuracy with 5.2 dB NMSE improve-
ment and had substantially low complexity.

In XL-MIMO, channel estimation schemes should aim at
not only the NMSE performance but also the complexity due
to the extremely large number of antennas. Several machine
learning based channel estimation schemes have been reviewed
above, and all these schemes achieve high NMSE performance
with low complexity. Therefore, the machine learning based
algorithms are absolutely suitable for XL-MIMO scenarios
to realize the low-complexity channel estimation. Note that
[166], [167] are data-driven and [168] is model-driven. As
for an intelligent and efficient method, machine learning still
needs to be further examined in order to be applied in channel
estimation in the future.

Lessons Learned: In this part, we summarize five channel
estimation approaches for XL-MIMO, detailed in Table X.
Compared with conventional mMIMO, channel estimation
schemes for XL-MIMO focus on near-field characteristics,
such as the spherical wave. Moreover, the complexity of
channel estimation schemes in XL-MIMO is much higher
than that of conventional mMIMO. Given that channel esti-
mation complexity in XL-MIMO exceeds that in conventional
mMIMO, we highlight low-complexity and machine learning-
based methods to advance efficient channel estimation design.

Low-complexity channel estimation schemes in XL-MIMO
rely on channel characteristics and efficient algorithms, such

as the compact eigenvalue decomposition of the spatial corre-
lation matrix [51], and the use of Loopy Belief Propagation for
approximate Bayesian inference [165] to design less complex
schemes. Machine learning-based methods leverage analogies
between image denoising and channel estimation, as well as
neural networks’ strong predictive capabilities, often outper-
forming other benchmarks in accuracy [166]–[168]. These
machine learning-based methods also aim to reduce the com-
putational load by substituting high-complexity modules in
traditional schemes with neural networks, enhancing simplicity
and accuracy. For example, [168] introduced a fixed-point
network to replace the non-linear estimator in the orthogonal
approximate message passing (OAMP) algorithm, yielding a
lower-complexity, higher-accuracy alternative. The promising
results of such machine learning-based channel estimation
methods motivate researchers for further exploration.

The remaining three channel estimation strategies, i.e., polar
domain-based, parameter-based, and joint activity and channel
estimation schemes, employ different channel characteristics
and design ideas, resulting in relatively higher complexities.
Specifically, the polar domain-based schemes encounter in-
creased complexity since the sampling dimension in the polar
domain is several times the number of antennas. Parameter-
based channel estimation schemes focus on estimating key
channel parameters (i.e., the distance and angle information)
based on near-field characteristics and then reconstructing
the channel utilizing these parameters. The parameter-based
schemes often rely on the specific structure of the antenna
array or channel, such as the radiated beams [89], [96], the
subarray architecture, and the properties of the scatterer [76].
Compared to the channel estimation schemes that estimate
an entire channel, the complexity of parameter-based channel
estimation schemes can be slightly reduced.

All these channel estimation schemes are designed based
on different channel characteristics, such as polar domain
sparsity, channel parameters, and spatial non-stationarity, and
different algorithms, including OMP, OAMP, and MRDN.
Further research leveraging these important characteristics and
methods to design applicable channel estimation schemes for
XL-MIMO is interesting.

B. Beamforming Schemes Design
The beamforming of XL-MIMO systems is changed from

far-field beam steering to near-field beam focusing due to
different EM characteristics from the planar wave to the
spherical wave. Linear signal beamforming schemes, such as
maximal ratio (MR), zero-forcing (ZF), and minimum mean-
square error (MMSE), are practical candidates for mMIMO
systems. As the number of antennas increases, the algorithm’s
complexity needs to be reduced further. In doing so, a few
low-complexity beamforming schemes have been proposed.
In this part, we review the beamforming schemes design for
XL-MIMO from the perspective of conventional linear beam-
forming schemes, low-complexity beamforming schemes, and
optimization design for beamforming schemes.

1) Conventional Linear Beamforming Schemes: With the
increase in the number of BS antennas in XL-MIMO sys-
tems, conventional linear beamforming schemes are able to
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achieve near-optimal performance, and thus are more attractive
than nonlinear beamforming schemes. Due to the discrepancy
between planar and spherical waves, the schemes addressing
the far-field beam split no longer work well in the near-field,
posing challenges to XL-MIMO communications.

• ZF Based Beamforming Schemes: It is common to use
linear ZF precoding, which offers near-optimal performance
and low complexity. The authors in [65] considered the
scenario with UPA-based XL-MIMO with patch antennas
serving two single-antenna users. They compared different
precoding schemes and found that ZF precoding outperformed
MR. More specifically, a reconfigurable holographic surface-
assisted low-earth-orbit (LEO) satellite communication system
was designed by the authors in [102]. Moreover, they de-
veloped a holographic beamforming algorithm for sum rate
maximization and derived a closed-form optimal holographic
beamformer. To maximize ZF precoded XL-MIMO downlink
SE, the authors in [82] proposed efficient resource allocation
(RA) procedures. With the aid of the proposed RA procedures,
the ZF based quasi-distributed algorithm could outperform the
centralized one with approximate operation settings.

• MR Based Beamforming Schemes: Besides ZF precoding
schemes, the MR precoding was considered in [94], [99]
studying the uplink SE achieved by single-antenna UEs com-
municating with LIS. Other recent studies [45], [100], [158]
considered the scenario that the BS was equipped with ULA-
based XL-MIMO or UPA-based XL-MIMO communicating
with multiple single-antenna users. Besides, the authors in
those papers derived a closed-form expression of the resulting
SNR with MR beamforming.

• MMSE Based Beamforming Schemes: The authors in [91]
proposed an efficient channel modeling scheme for XL-MIMO
systems, where the BS was equipped with ULA-based XL-
MIMO or UPA-based XL-MIMO. They found that, unlike
ZF and MR combining schemes, MMSE combining scheme
presented an optimal performance in any studied scenarios,
resulting in unlimited capacity regardless of any number of
users, even under crowded configurations. The authors in [98]
studied the near-field modeling and performance analysis for
XL-MIMO communication. They took into account the per-
formance of MR, ZF, and MMSE beamforming schemes. The
authors in [130] investigated the multi-user communication
performance with both the near-field and far-field UE and
scatterers based on the MR and MMSE combining schemes.

2) Low-Complexity Beamforming Schemes: Utilizing the
extremely large number of antennas mitigates many problems
thanks to improved diversity gain. However, it also creates
new implementation issues, one of which is the extremely
high computational complexity. As the dimension of channels
grows in XL-MIMO systems, linear precoding schemes such
as ZF precoding require matrix inversions of considerable
size, resulting in high complexity. Thus, many low-complexity
beamforming schemes have been proposed to address this
issue as summarized in Table XI.

• Randomized Kaczmarz Algorithms Based Beamforming
Schemes: The randomized Kaczmarz (RK) algorithm, known
for addressing systems of linear equations (SLEs), has been
adapted to simplify linear signal processing in mMIMO. This

method, as seen in [92] and [139], has been utilized to design
uplink receivers for XL-MIMO systems to minimize compu-
tational complexity while balancing performance. Specifically,
in [139], RK-based distributed receivers were studied with
the sub-array architecture and spatial non-stationarity. The RK
algorithm was applied at each sub-array to find the solution
of the SLE. Then, the distributed linear data fusion (DLDF)
receiver at the CPU was implemented as in [77].

The authors in [92] proposed three accelerated RK based
RZF receivers, where three heuristic acceleration methods,
i.e., the sampling without replacement (SwoR) technique, the
greedy RK (GRK) algorithm, and the randomized sampling
Kaczmarz (RSK) algorithm, were applied. The GRK was a
greedy scheme that applied the complete residual information
of the SLE to accelerate the convergence further. Different
from GRK, the RSK applied partial residual information to
solve the SLE with a much smaller amount of information
compared with that of the GRK. Numerical results demon-
strated that the RK-RZF based on the SwoR acceleration
method could reduce the computational complexity by nearly
20% and 70% in the mMIMO scenario without spatial non-
stationarity and in the XL-MIMO scenario with spatial non-
stationarity, respectively. In addition, the GRK-RZF scheme
was seen to be robust in the scenario with severe inter-user
interference (IUI).

The authors in [141] studied low-complexity precoding
design and proposed an SwoR-RK algorithm-based precoding
scheme. The SE and bit error rate (BER) performance were
analyzed with the sub-array architecture and the spatial non-
stationarity. Numerical results demonstrated that the computa-
tional complexity given by the RK algorithm and the SwoR-
RK algorithm achieved about 51.3% reduction compared to
that of the traditional RZF algorithm. Additionally, the pro-
posed algorithm was seen to achieve performance close to
that of RZF precoding while maintaining a balance between
SE performance and computational complexity.
• Message Passing Based Beamforming Schemes: Some

algorithms based on message passing schemes have been
proposed to reduce the processing complexity of XL-MIMO.

Considering the channel spatial non-stationarity and the ex-
istence of VRs, the authors in [64] proposed uplink distributed
receivers based on variational message passing (VMP). As
shown in [64, Fig. 3], VMP was first implemented at each
local processing unit (LPU). Then the decoded symbols from
the LPUs were fused at the CPU to derive the final detected
symbols. Various initialization options for VMP, data fusion
strategies, and final detected schemes in the CPU were con-
sidered with different processing complexities. Based on these
various strategy choices, a variety of potential VMP receivers
could be applied in different practical applications. Numerical
results demonstrated that the proposed scheme outperformed
the fully centralized one and approached the genie-aided
match filter [186]. More interestingly, the LPU aided schemes
alleviated the processing complexity in a parallel manner.

To overcome three major challenges in XL-MIMO systems:
computational complexity, scalability, and non-stationarities,
the authors in [86] proposed an uplink decentralized receiver
based on a combination of belief propagation (BP) and VMP.
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TABLE XI
CHARACTERISTICS FOR LOW-COMPLEXITY BEAMFORMING SCHEMES.

Classification Ref. UL/DL
Channel

characteristics
Design ideas Design characteristics

RK algorithms
based schems

[92] UL
NLoS, spatial

non-stationarity

Applying three heuristic acceleration
methods, SwoR, GRK, and RSK, in

RK based RZF receivers

The SwoR acceleration method achieves the
best benefit-cost ratio, and the GRK method is

robust in the severe IUI scenario.

[139] UL
NLoS, spatial

non-stationarity

Applying RK algorithms to each
sub-array to design distributed

receivers

Distributed low-complexity receivers with RK
algorithms applied at each sub-array and

DLDF method at the CPU

[141] DL
NLoS, spatial

non-stationarity

Applying SwoR-RK algorithms to
design the low-complexity precoding

schemes

SwoR-RK algorithm achieves about 51.3%
complexity reduction compared with the
traditional RZF algorithm with the SE

performance approaching that of the RZF
algorithm

Message passing
based schemes

[64] UL
NLoS, spatial

non-stationarity

Moving some processing with high
computational complexity to LPUs

in parallel

Various initialization options for VMP, data
fusion strategies, and final detected schemes

in the CPU can be applied.

[86] UL NLoS
Combining the BP and VMP to

construct a decentralized receiver

All LPUs decode the symbols in parallel and
can exchange information with respective

adjacent LPUs.

[184] UL NLoS
Introducing the GNN module in

AMP algorithm to cancel the
multi-user interference

The proposed AMP-GNN scheme embraces
both the low complexity for AMP detectors

and the efficiency of GNN modules.

Matrix inversion
algorithms based

schemes

[79] UL
NLoS, spatial

non-stationarity

Computing the matrix inversion in
EP detector for the sub-array based

architecture recursively

The sub-array based EP detector is
implemented in parallel and the matrix

inversion in EP detector can be computed
recursively as [79, Algorithm 2].

[87] UL
NLoS, spatial

non-stationarity
Applying PE to approximate the

matrix inversion in each EP iteration

The proposed PE-EP detectors have much
lower computational complexity than that of
the original EP detectors and can achieve the
performance approaching that of the original

EP detectors.

[53] DL

NLoS, Fourier
plane wave

representation
based

Leveraging NS expansion to replace
the matrix inversion in the ZF

precoding scheme.

Applying 4 NS iterations to approximate the
matrix inversion is efficient in achieving a

good trade-off for the performance and
complexity.

[185] DL
NLoS, spatial

non-stationarity

Applying Jac-PCG iterative inversion
method to the matrix inversion in the

RZF precoding scheme

The Jac-PCG algorithm based scheme
achieves about 54% reduction compared with

the original scheme with the approaching
close SE performance.

In this scheme, all LPUs decoded the symbols in parallel and
could exchange information with respective adjacent LPUs.
This decentralized receiver, which was scalable, was seen to
outperform other decentralized receivers and could achieve
almost the same performance as a centralized benchmark
scheme.

Moreover, the authors in [184] proposed a low-complexity
graph neural network (GNN) enhanced approximate message
passing (AMP) scheme, called AMP-GNN, which was a
model-driven DL-based detector. The neural network structure
was obtained by unfolding the AMP detector and incorporating
the GNN module. The proposed processing scheme could effi-
ciently cancel for the multi-user interference and achieve both
the low complexity for the AMP detector and the efficiency

of the GNN module. And the proposed AMP-GNN could
significantly improve the performance of the AMP detector.

• Matrix Inversion Algorithms Based Beamforming
Schemes: Nevertheless, implementing the above conventional
beamforming schemes can be challenging due to the chan-
nel matrix inversion operation, which can add significant
computational complexity to the systems with large antenna
arrays. The authors in [79], [87] proposed low-complexity
expectation propagation (EP) detectors for XL-MIMO sys-
tems. The authors in [79] investigated the uplink sub-array
based architecture, where the sub-array based EP detector was
implemented at each sub-array in parallel. When considering
the sub-array based architecture, the matrix inversion at the
EP detector could be computed recursively as [79, Algorithm
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2]. Moreover, the authors in [87] studied uplink PE-EP de-
tectors, where the matrix inversion in each EP iteration was
approximated by polynomial expansion (PE). Based on the
low-complexity PE approximation, the PE-EP detectors had
much lower computational complexity, i.e., O

(
K2

)
, than that

of the original EP detectors, i.e., O
(
K3

)
, where K was the

number of single-antenna UEs. Numerical results validated
that the proposed PE-EP detectors could achieve performance
approaching that of the original EP detectors, which showed
a good balance between the performance and complexity.

At the same time, the authors in [53] focused on the
downlink multi-user communications and modeled the electro-
magnetic channel in the wavenumber domain using the Fourier
plane wave representation. Besides, they proposed the lever-
aging Neumann series (NS) expansion to replace the matrix
inversion in the ZF precoding scheme. More specifically, in
the NS based method, the matrix inversion was decomposed
into the main diagonal matrix and off-diagonal matrix, and
then the matrix inversion could be represented based on these
decomposed matrices. Numerical results demonstrated that the
NS based ZF precoding could achieve similar performance to
that of the original ZF precoding while avoiding high com-
plexity matrix inversion. Moreover, applying 4 NS iterations
to approximate the matrix inversion was efficient in achieving
a good trade-off for the performance and complexity.

To reduce the computational complexity for the matrix in-
version, the authors in [185] explored several iterative methods
for computing the matrix inversion in the precoding scheme
design for XL-MIMO systems. Several iterative methods to
calculate the matrix inversion were applied: Gauss-Seidel
(GS), Jacobi Over Relaxation (JOR), Conjugate Gradient
(CG), and Jacobi-Preconditioning Conjugate Gradient (Jac-
PCG) methods. The authors compared these methods from
the perspective of SE performance, computational complexity,
and convergence speed as summarized in [185, Table II].
Compared with the JOR method, the GS method exhibited
higher SE performance and faster convergence. However, the
computations in the GS method could not be implemented
in parallel and had high complexity. The CG method had
low computational complexity compared with that of the
GS method but achieved bad SE performance. Among these
methods, the Jac-PCG method could achieve a good trade-off
between the computational complexity and the performance of
XL-MIMO systems. More specifically, the Jac-PCG method
had lower computational complexity and higher SE perfor-
mance compared with that of the GS method and CG method,
respectively. And the Jac-PCG method could achieve about
54% reduction compared with that of the traditional RZF
precoding scheme with the approaching close SE performance.

3) Optimization Design for Beamforming Schemes: As
discussed above, conventional linear and low-complexity pro-
cessing schemes can be implemented based on different re-
quirements. However, to further capture the superiority of XL-
MIMO, the beamforming schemes can be optimized to further
improve the corresponding system performance [187], [188].
Several works consider the optimization of signal beamform-
ing schemes as summarized in Table XII.

Compared to the far-field, near-field communications exhibit

many distinct characteristics, which make near-field resource
allocation different and are often modeled as a multi-objective
joint optimization problem. The authors in [187] compared
optimization tools, e.g., numerical techniques, reinforcement
learning methods, and AI-generated optimization, for address-
ing near-field resource allocation, emphasizing their strengths
and limitations. More specifically, the beamforming precoding
matrix and power control strategy were studied as use cases.
For the fully-digital and hybrid fully-connected precoding
architecture design, the authors in [187] compared an AI-
generated optimization method [189] with optimal beamform-
ing [190], Riemannian manifold optimization [110], alternat-
ing optimization [110], and reinforcement learning [191]. It
was observed that the AI-generated optimization method was
suitable in the complex and ever-changing scenario.

The authors in [102] considered the downlink transmission,
where the holographic beamforming and the digital beam-
former were implemented. The free-space LoS propagation
channel was modeled, where the BS was equipped with UPA-
based XL-MIMO with point antennas, serving multiple LEO
satellites equipped with multiple antennas. The ZF digital
beamformer was implemented, and the holographic beamform-
ing scheme was optimized to maximize the sum rate. The
Lagrangian multiplier-associated method was implemented
to solve the optimization problems. The proposed scheme
had guaranteed robustness since the tracking errors of the
satellites’ positions could have few effects on the sum rate.

The distance-aware precoding (DAP) scheme was proposed
in [84] to improve the capacity by applying the near-field
effect. The authors considered the scenario with the transmitter
and the receiver equipped with ULA-based XL-MIMO, where
the digital precoder, the analog precoder, and the adjustable
selection matrix were considered when transmitting the sig-
nals. Furthermore, the optimization problem of maximizing the
SE was formulated. Then, the DAP algorithm was proposed
as [84, Algorithm 1] to optimize the digital precoder, analog
precoder, adjustable selection matrix, power allocation matrix,
and number of data streams to maximize the SE performance
based on the alternating optimization. The authors demon-
strated that the proposed DAP precoding scheme could achieve
a two-times increase in the SE performance compared to
classical hybrid precoding schemes.

The authors in [106] investigated the uplink transmission
for the scenario where one BS equipped with UPA-based
XL-MIMO with point antennas served multiple single-antenna
UEs. Besides, the baseband combiner and the weight matrix, a
configurable weight matrix denoting the array’s response, were
optimized to maximize the achievable sum rate. The equivalent
matrix-weighted MMSE was applied to transform the sum-
rate maximization objective to a simpler equivalent objective,
where the equivalent matrix-weighted MMSE problem was
convex to the optimized variables [192]. Then, the alternating
optimization method was adopted to derive a feasible solution.
The proposed framework could effectively alleviate the sum-
rate loss introduced by near-field and dual-wideband effects.

The authors in [110] considered the downlink transmission
for the scenario where one BS was equipped with UPA-
based XL-MIMO with point antennas serving multiple single-



33

TABLE XII
CHARACTERISTICS FOR OPTIMIZATION DESIGN OF BEAMFORMING SCHEMES

Ref. Hardware design UL/DL
Channel

characteristics
Optimization

objective
Optimization variables Optimization methods

[187] ULA DL NLoS
Sum spectrum

efficiency
maximization

Digital precoding and
analog precoding matrices

Riemannian manifold
optimization, alternating

optimization,
reinforcement learning,

and AI-generated
optimization

[102] UPA
(point antennas)

UL
LoS, free-space
pathloss based

Sum rate
maximization

Holographic beamforming
scheme

Lagrange multiplier

[84] ULA –
LoS, free-space
pathloss based

Spectrum efficiency
maximization (only

one pair of the
transmitter and

receiver)

The digital precoder,
analog precoder,

adjustable selection
matrix, power allocation

matrix, and the number of
data streams

Alternating optimization

[106] UPA
(point antennas)

UL LoS + NLoS
Sum-mean-square-
error-minimization

Beam combining schemes Alternating optimization

[110] UPA
(point antennas)

DL
LoS, free-space
pathloss based

Sum rate
maximization

DMA configuration and
digital precoding scheme

Riemannian manifold
optimization and

Alternating optimization

[59] CAP DL
LoS, dyadic Green’s

function based
Sum rate

maximization
Pattern functions and
receiving combiners

Alternating optimization

[107] UPA
(point antennas)

UL NLoS
Energy efficiency

maximization
Transmit precoding design
and DMA tuning strategy

Alternating optimization

antenna UEs. Three typical antenna architectures: fully digi-
tal, (phase shifters based-) hybrid, and dynamic metasurface
antenna (DMA) architectures, were investigated. The beam
focusing problem for the sum-rate maximization was formu-
lated, and the alternating design algorithm was proposed to
optimize the DMA configuration and the digital precoding
scheme jointly. The authors observed that one could reliably
simultaneously communicate with multiple UEs located in the
same angular direction with different distances with the aid of
the proposed beam-focusing precoding schemes.

It is worth noting that XL-MIMO can also generate any
electric current density distribution in a desired manner. Thus,
it is important to design the pattern, i.e., the electric cur-
rent density distribution, to achieve improved performance.
A pattern-division multiplexing technique was proposed in
[59] for the scenario where one BS equipped with a 2D
CAP plane serving multiple UEs also equipped with 2D
CAP planes. The sum capacity maximization problem was
formulated to optimize the pattern. Furthermore, the weighted
MMSE approach was adopted to derive the equivalent transfor-
mation of the sum capacity maximization problem. Then, the
pattern functions and receiving combiners were designed based
on iterative optimization. The pattern-division multiplexing
technique showed the potential for XL-MIMO to control the
electric current density to approach outstanding performance.

To promote the practical applications for XL-MIMO, the
power consumption problem is also an important factor due

to the extremely large aperture of XL-MIMO. It is vital to
consider the energy efficiency (EE) maximization problem
for sustainability [193]. The authors in [107] investigated
the EE maximization problem for the uplink transmission.
An algorithmic framework to design the transmit precoding
of each multi-antenna UE and the tuning strategy was con-
sidered, considering the instantaneous or statistical channel
state information (CSI). Then, the algorithmic framework
was implemented using Dinkelbach’s transform, alternating
optimization, and deterministic equivalent methods.

Lessons Learned: Although conventional linear beam-
forming schemes can be applied in XL-MIMO, they may
cause extremely higher computational complexity than that of
mMIMO. Thus, many low-complexity processing schemes for
XL-MIMO are discussed. All these schemes inspire the low-
complexity design and promote the practical implementation
of XL-MIMO. To design the low-complexity beamforming
schemes, novel array architectures, such as the sub-array archi-
tecture with distributed learning, and efficient algorithms, such
as the RK algorithms, VMP algorithms, and low-complexity
matrix inversion algorithms, are applied. To promote further
research on low-complexity beamforming schemes for XL-
MIMO, intelligent array architecture and network architec-
ture, such as the distributed architecture [38] and modular
architecture [100] are advocated to provide flexible and ef-
ficient processing. Further, other low-complexity algorithms
and machine-learning networks can also be applied to design



34

lightweight beamforming schemes for XL-MIMO. Addition-
ally, optimization design for beamforming schemes has also
been reviewed. These studies can motivate further research
on optimization design for XL-MIMO systems with different
optimization scenarios, objectives, and methods to exploit the
potential of XL-MIMO fully.

C. Machine Learning Empowered Signal Processing

With the spherical wave propagation model, the traditional
signal processing methods are no longer effective in the
analysis of XL-MIMO systems with high accuracy due to
near-field communication. However, the machine learning
based methods can capture the inherent characteristics of
the channel. Hence, the related algorithms, e.g., the machine
learning based channel estimation, machine learning based
beamforming, distributed learning, and so on, are proposed
for different application scenarios [194], [195]. The machine
learning based channel estimation has been reviewed and
motivated in Sec. IV-A5 so that we focus on the machine
learning based beamforming and distributed learning in this
part.

1) Machine Learning Based Beamforming: Apart from the
commonly used linear receive beamforming schemes, i.e.,
MRC beamforming, ZF beamforming, and MMSE beamform-
ing, the codebook-based beamforming with a predefined set of
beamforming vectors is of more interest in traditional mMIMO
systems [196]. This scheme with high computational complex-
ity makes it challenging to be applicable to different scenarios,
especially the near-field effect incurred by the extremely large-
scale antenna arrays of XL-MIMO systems. In contrast, the
hierarchical methods, e.g., the deep neural network (DNN)
based scheme [196] and long short-term memory (LSTM)
network [197], could show an advantage in solving the non-
convex problem with the aid of deep learning. In the near-field
domain, the distance and angle restrict the codebook design. In
[93], the above factors regarding the optimal codeword could
be estimated with the convolutional neural network (CNN),
which extracts features from the wide far-field beams. In
[196], the authors considered a DNN-aided codebook-based
beamforming architecture for imperfect CSI under multipath,
which could be applied to high-speed scenarios.

2) Distributed Learning: Recently, distributed learning, a
method leading the deployment of computing towards the
network edge, has been investigated in MIMO systems [198]–
[200]. In XL-MIMO systems, the data processing burden
and complexity depend on the number of antennas since the
high-dimension and complicated matrix manipulation were
introduced. In XL-MIMO systems, the extremely large number
of antennas leads to a significant data processing and compu-
tational burden. Distributed learning, which can relieve the
processing burden at the CPU, is regarded as a solution to
tackle these problems [191], [201], [202].

To mitigate the significant processing complexity and en-
ergy use in XL-MIMO systems, the authors in [201] explored
a cell-free paradigm using multi-agent reinforcement learning
(MARL) to develop distributed strategies. The authors pro-
posed a multi-agent cell-free XL-MIMO system, where the

BSs, UEs, and even the antennas could be viewed as agents
to learn to allocate resources and transmit signals efficiently.
Two use cases of the MARL-aided multi-agent cell-free XL-
MIMO system were studied: antenna selection and power
control. For instance, with the help of MARL, the multi-agent
deep deterministic policy gradient (MADDPG) based antenna
selection scheme could achieve a uniform SE performance and
26% EE improvement compared with the scenario without
antenna selection.

The authors in [202] leveraged fuzzy logic to reduce the
computational complexity and proposed two signal process-
ing architectures, namely, centralized training and centralized
execution (CTCE) with fuzzy logic and centralized training
and decentralized execution (CTDE) with fuzzy logic. Both of
these schemes combined MARL and fuzzy logic to optimize
the power control strategy for maximizing SE performance.
Numerical results showed that leveraging fuzzy logic could
effectively reduce the computational complexity by 7.59% and
18.44% for CTCE and CTDE, respectively, while achieving
better realizability in practical application scenarios than con-
ventional MARL-based algorithms.

Unlike approaches that lessen the training requirements
for MARL networks [202], the authors in [191] combined
a decoupled architecture with a mechanism for prioritizing
experience selection. This strategy enhances the convergence
rate by segregating global rewards and focusing on experiences
with greater losses during training. Numerical results demon-
strated that the proposed method achieved a faster conver-
gence rate and comparable performance with the conventional
methods. Specifically, compared with conventional MADDPG
algorithms, the convergence rate of the proposed algorithm
demonstrated a 65.41%and 61.88% improvement in static and
dynamic scenarios, respectively.

Lessons Learned: We motivate the emerging deep learning
empowered signal processing, which can enhance XL-MIMO
systems and is regarded as the promising solution for the
existing difficulties in XL-MIMO, such as the near-field aided
processing and extremely high computational complexity. In
summary, based on the observations and insights in this part,
we highlight different approaches for designing and optimizing
signal processing schemes for XL-MIMO.

V. APPLICATION SCENARIOS

In this section, we discuss several application scenarios in
which the XL-MIMO technology can be utilized effectively to
enhance the performance of wireless communication systems.
These application scenarios demonstrate the adaptability and
potential of XL-MIMO in addressing the challenges and
requirements of various systems.

A. Physical Layer Security Enhancement

Improving the security at the physical layer is a crucial
aspect of wireless communication systems [203], [204].
The XL-MIMO technology offers substantial potential for
enhancing physical layer security (PLS). In particular, XL-
MIMO techniques capitalize on the unique properties of
spherical-wavefront propagation, which becomes crucial when
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the distances between mobile users and the base station are
small [89].

For example, the authors in [203] demonstrated that incor-
porating spherical-wavefront propagation in XL-MIMO con-
figurations yields substantial PLS benefits. One of the advan-
tages is the protection against eavesdroppers in similar angular
orientations, which can otherwise threaten communication
security under planar-wavefront propagation. In addition, the
authors developed a leakage subspace precoding technique
for secure precoding and user scheduling [71]. This novel
method increases the spectral secrecy efficiency by more than
40 percent compared to traditional zero-forcing approaches
under various eavesdropper collusion strategies [205]. This
finding highlights the capability of XL-MIMO technology to
enhance the PLS of wireless communication systems.

The authors in [205] analyzed the distinctions between
plane-wave (PW) and spherical-wavefront (SW) models re-
garding PLS for XL-MIMO systems with multiple eaves-
droppers. They considered both colluding and non-colluding
strategies of eavesdroppers, providing a comprehensive under-
standing of the PLS implications for various scenarios. The
investigation determined that the propagation characteristics
associated with the SW model resulted in higher secrecy rates
than that of the PW model [47]. The SW model reduces
the regions where an eavesdropper can render the attack,
emphasizing the need to consider the appropriate propagation
model when designing and evaluating PLS in XL-MIMO
systems.

In addition, the authors in [205] investigated the effects
of realistic propagation conditions on the achievable secrecy
performance of MIMO systems in the presence of an eaves-
dropper (Eve), with a particular emphasis on the κ− µ shad-
owed fading model [206]. They derived closed-form expres-
sions for secrecy performance metrics such as secrecy outage
probability, probability of strictly positive secrecy capacity,
and average secrecy capacity under two conditions: 1) the
transmitter knew the CSI of the legitimate receiver (Bob) but
not Eve’s CSI, and 2) the transmitter knew the CSI of both
the Bob’s and Eve’s channels [203]. The study also highlighted
the effects of various propagation conditions and the number
of antennas on the performance of secrecy.

Lessons Learned: Based on the analysis of multiple studies,
it is evident that XL-MIMO technology significantly enhances
the PLS of next-generation wireless communication systems.
Compared to planar-wavefront propagation, the distinctive
properties of spherical-wavefront propagation contribute to en-
hanced secrecy performance and protection against eavesdrop-
ping threats [132]. The significance of considering the appro-
priate propagation model when designing and evaluating PLS
in XL-MIMO systems and the potential of novel precoding
and scheduling strategies to enhance secrecy spectral efficiency
further are among the most important lessons learned. Under-
standing the influence of genuine propagation conditions, such
as the κ− µ shadowed fading model [207], [208], on secrecy
performance metrics enables the development of more secure
and resilient wireless networks.

B. UAV Communications

Unmanned aerial vehicles (UAVs) are increasingly being
utilized for communication purposes in modern wireless net-
works due to their flexibility, mobility, and ability to provide
aerial coverage and LoS channels [209]. Integrating UAVs with
XL-MIMO systems offers opportunities to enhance communi-
cation performance, energy efficiency, and coverage in various
application scenarios. We review recent research on UAV
communications, focusing on developing advanced channel
models and system performance analysis for XL-MIMO-aided
UAV communications.

The authors in [210] introduced a geometric 3D non-
stationary channel model for mmWave band-wideband UAV
MIMO communications. This model is based on a multilayer
cylinder reference model and considers stationary and mov-
ing clusters encompassing the transmitter (Tx) and receiver
(Rx). The proposed model accommodates local and remote
clusters in propagation environments and uses a continuous-
time Markov model to represent the clusters’ dynamic prop-
erties. The authors in [210] also examined the space-time-
frequency correlation function, quasi-stationary interval, and
Doppler power spectrum and derived closed-form expressions
for the survival probabilities of clusters. Alternatively, the
authors in [91] proposed a double-scattering XL-MIMO chan-
nel model for accurately representing spatial non-stationarity
in dynamic environments. The model includes two types of
dispersion clusters, one near the BS and the other near the
UE. The authors also evaluated the model for uniform linear
and planar array (ULA and UPA) antenna configurations.
Through Monte-Carlo simulations, performance metrics such
as SINR, condition number (CN), and SE were analyzed
for linear combiners MRC, ZF, and MMSE. Considering
XL-MIMO-aided UAV communications, both [210] and [91]
provide valuable insights for developing advanced channel
models and system performance analysis. Specifically, the
mmWave UAV MIMO channel model proposed in [210] can
be combined with the double-scattering XL-MIMO channel
model in [91] to create a comprehensive channel model that
addresses both UAV communication scenarios and XL-MIMO
system characteristics. The proposed channel models and their
analyses can serve as guidelines for designing effective UAV
communication systems for future space-air-ground integrated
networks (SAGINs) and 6G wireless networks.

In addition, the authors in [211] investigated using RIS in
UAVs to provide energy-efficient communication to ground
users in densely populated urban areas. The objective is
to reduce the network’s overall energy consumption while
maintaining a specific QoS for the users. In this context, the
optimization problem entails joint UAV trajectory and RIS
phase decisions in order to minimize the downlink trans-
mission power of the UAV and base station. The authors
proposed a successive convex approximation (SCA) method
to resolve this problem. Simulation results demonstrate that
the proposed algorithm can provide a guaranteed minimum
rate while minimizing the transmission power of the UAV and
BS. The proposed optimization framework in [211] can be
extended to XL-MIMO systems when immense antenna arrays
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and their potential to improve communication efficiency are
taken into account [212]. By incorporating XL-MIMO features
into the optimization problem, the energy consumption of
UAVs and BSs can be reduced further.

Lessons Learned: Several key lessons can be learned from
the aforementioned studies on UAV communications in XL-
MIMO systems. Advanced channel models, such as those
incorporating mmWave and double-scattering characteristics,
are crucial for accurately representing UAV communication
scenarios in XL-MIMO systems. Additionally, integrating RIS
with UAVs in XL-MIMO systems can significantly improve
energy efficiency and communication performance in dense
urban areas [75], [107]. This highlights the importance of
developing collaborative optimization frameworks considering
UAV trajectory and network resources to efficiently design
XL-MIMO UAV communication systems [17], [63].

C. Integrated Sensing and Communications (ISAC)
ISAC plays an increasingly crucial role in modern mobile

networks as it offers comprehensive support for a wide range
of applications, e.g., Metaverse [213] and AI-generated con-
tent [214], by merging communication and sensing function-
alities. XL-MIMO technology has shown great potential for
enhancing the performance of ISAC networks. Researchers
have investigated various aspects in this context, such as radar
sensing, near-field radio sensing, and accurate channel mod-
eling. By combining the insights from these studies, we can
better understand how XL-MIMO systems can be optimized
for better performance in mobile networks.

The authors in [215] investigated radar sensing using XL
antenna arrays in mobile communication networks, introduc-
ing a flexible model that accounts for both spherical wavefront
and amplitude variations among array elements. This research
surpasses conventional uniform plane wave (UPW) models. It
offers valuable insights for designing and implementing XL-
MIMO radar and XL-phased-array radar modes in mobile net-
works [47]. In a related study, the authors in [216] investigated
near-field radio sensing utilizing XL antenna arrays. Using a
uniform spheric wave (USW) sensing model, they developed
closed-form expressions for the Cramér-Rao Bounds (CRBs)
for angle and range estimations in near-field XL-MIMO radar
mode and XL-phased array radar mode [216]. This study high-
lights the practical limitations of antenna array size in near-
field sensing and provides insight into the tradeoffs between
array size and estimation precision.

Lesson Learned: XL-MIMO’s inherent properties distinctly
enable it to integrate radar sensing with communication func-
tions in mobile networks. The very large spatial extent of XL-
MIMO arrays not only enhances communication performance
but also provides finer spatial resolution. This dual function
is an important advantage of XL-MIMO over conventional
systems. Spherical wavefronts and spatial non-stationarities,
intrinsic to the mobile environment, must be modeled for
maximum efficacy.

D. Internet-of-Things
IoT networks are integral to modern smart city applica-

tions, home automation, healthcare monitoring, and more,

necessitating the capability to support massive numbers of
interconnected devices and ensure consistent, reliable commu-
nication. As these networks continue to expand in both scope
and density, traditional communication systems can become
strained under the sheer number of connections. XL-MIMO
technology has shown promising results in addressing these
challenges by providing enhanced capacity and performance.
The following studies provide insights into how XL-MIMO
can be tailored for IoT networks, considering QoS, capacity
improvement, and near-field properties [13], [217].

The authors in [81] addressed the issue of sustaining mini-
mum QoS in congested IoT networks with limited resources.
In high-density XL-MIMO systems, they introduced a QoS-
aware joint user scheduling and power allocation method for
downlink channels. This method consists of two sequential
steps: a clique-based scheduling algorithm for user scheduling
and optimal power allocation subject to transmit power budget
and minimum achievable rate per user constraints. The paper
presented a generalized non-stationary multi-state channel
model based on spherical-wave propagation to evaluate the
proposed technique. The multipath fading model and the path
loss rule account for users in different channel conditions
encountering different propagation characteristics [196]. By
integrating these factors, the authors in [81] contributed sig-
nificantly to the design and optimization of IoT networks in
densely populated environments.

In a related study, the authors in [84] explored the viability
of XL-MIMO communication as an attractive technology for
capacity enhancement in forthcoming 6G networks. They
propose a DAP framework that exploits the near-field effect as
a new capacity enhancement strategy. The DAP framework op-
timizes the number of activated RF chains and precoding ma-
trices to align with the increased DoFs [82], thereby promoting
the scalability of IoT networks and enabling the integration of
a large number of devices across a variety of applications while
maintaining reliable and efficient connectivity.

Lesson Learned: Emerging IoT applications demand a
communication framework capable of efficiently handling an
immense number of devices. Navigating through high-density
connections involves more than mere numerical management
as it demands adept communication orchestration, particu-
larly using QoS-aware joint user scheduling and distance-
aware precoding architectures. XL-MIMO’s capacity extends
beyond throughput enhancement, ensuring each IoT device,
from low-power sensors to high-demand surveillance cameras,
attains its communication needs efficiently and with minimal
latency. This involves a strategic adaptation of communication
parameters via techniques like adaptive modulation and coding
(AMC) and is crucial in maintaining reliable, low-latency
communication across a densely populated network. Utiliz-
ing sophisticated algorithms safeguards the communication
integrity amongst an array of IoT devices, each with varied
communication and performance requirements, highlighting
the pivotal role of XL-MIMO in managing spectral and spatial
resources effectively.
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E. Edge Computing

Edge computing is a promising solution to support new
multimedia services that demand ultra-low latency and exten-
sive computational capabilities in resource-constrained end-
user devices. In this context, XL-MIMO can provide reliable
access links and guarantee uniform QoS. The following studies
explore the potential of edge computing and XL-MIMO.

The authors in [218] introduced a MIMO-enabled mobile
edge network designed to meet the stringent requirements of
advanced services. They created a joint communication and
computing resource allocation (JCCRA) problem to minimize
energy consumption while meeting the delay constraints [75].
They proposed a distributed cooperative solution strategy
based on the multi-agent, deep deterministic policy gradient
(MADDPG) algorithm. Compared to heuristic baselines, simu-
lation results demonstrate the efficacy of the proposed strategy,
emphasizing a reduction in total energy consumption of up to
five times. This study serves as a guide that an integration
of XL-MIMO and edge computing has a potential to facilitate
energy-efficient, low-latency communication and processing in
future wireless networks.

In a related study, the authors in [198] examined the issue
of proactively caching popular content in IoT-enabled multi-
cell MIMO systems to achieve low latency and decreased
backhaul congestion. They modeled the fluctuations in content
popularity (CP) over time as a Markov process and used
reinforcement Q-learning to determine the optimal content
placement strategy. However, traditional Q-learning encounters
problems with many Q-updates. Thus, the authors proposed
two (linear and non-linear) function approximations-based
Q-learning approaches that require only a constant number
of variable updates. Simulations confirmed the convergence
of these approximation-based methods and their successful
learning of optimal content placement.

Lesson Learned: Analyzing recent studies reveals the cru-
cial integration of edge computing and XL-MIMO in meet-
ing future wireless communication needs. Specifically, XL-
MIMO enhances edge computing by providing distinct spatial
diversity via its large-scale antenna arrays, which is critical
for ultra-reliable, low-latency communication in applications
like real-time analytics and augmented reality. In a technical
light, XL-MIMO’s notable spatial resolution, coupled with
edge computing, supports optimal content caching strategies
through machine learning approaches, such as approximated
Q-learning. This combination effectively manages local data,
reduces backhaul traffic, and augments user experience by
decreasing latency and bolstering data retrieval reliability,
while also paving the way for predictive analytics at the edge,
enhancing system efficacy and responsiveness.

F. Massive Connectivity

The integration of XL-MIMO systems and edge computing
is redefining wireless connectivity by enhancing spatial mul-
tiplexing and distributing computational resources optimally,
thereby bolstering spectral efficiency and minimizing latency.
A representative example of this shift is integrating satellite

communication systems with terrestrial networks. This conver-
gence heralds an anticipation of a 6G-centric future. Central
to this evolution is the increasing role of Massive Machine-
Type Communication (MTC) designed to serve the burgeoning
number of devices and systems. The challenge of ensuring
massive connectivity becomes paramount, emphasizing the
need for innovative access mechanisms and advanced trans-
mission technologies.

XL-MIMO stands out as a key enabler for massive connec-
tivity, characterized by extensive antennas and large aperture
arrays, which introduce challenges due to near-field access
channels and associated high costs [219]. A proposed solution
involves an uplink grant-free massive access scheme that em-
ploys a mixed-analog-to-digital converter (ADC) architecture,
effectively balancing access performance with power conser-
vation. A significant insight from [219] is the development of a
two-stage orthogonal approximate message-passing algorithm,
skillfully managing joint activity detection and channel esti-
mation through spatial and angular domain structured sparsity.

XL-MIMO systems introduce the concept of the visible
region (VR), wherein users perceive different array parts due
to the spatial non-stationarity, leading to variable VRs and ne-
cessitating carefully designed connectivity mechanisms [220].
The VR model therein highlights the linkage between a user’s
physical location and its VR, while introducing methods
like the VR-Net, which employs neural networks. Simulation
results have indicated that while all proposed schemes achieve
a high VR recognition accuracy with a substantial number
of beacon users, VR-Net, despite its simplicity, demonstrates
notable resilience and efficacy while outperforming the tradi-
tional Voronoi cell partitioning technique, especially when the
number of training samples is limited.

Achieving true massive connectivity involves more than
addressing access and spatial challenges as mMTC introduces
additional complexities related to spatial non-stationarities
and visibility regions across expansive XL arrays as detailed
in [221]. The proposed NOVR-XL solution merges non-
orthogonal multiple access (NOMA) with XL-MIMO, specif-
ically for random access in saturated mMTC XL-MIMO con-
texts. Notably, NOVR-XL allows multiple overlapping users
to engage with the same XL subarray, improving the average
sum rate from 160 to 520 bits/channel use when the average
number of UEs contending by the pilot is 2, outperforming
the strongest user collision resolution scheme.

VI. FUTURE DIRECTIONS

Several prospective future research directions can be identi-
fied to further develop and implement the emerging XL-MIMO
technology.

A. AI-Aided Resource Allocation Scheme

The performance of XL-MIMO systems can be substantially
enhanced by employing machine learning and artificial intelli-
gence techniques [216], [222]. This includes the development
of intelligent channel estimation methods, beamforming strate-
gies, user scheduling, and resource allocation schemes that
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adapt to the ever-changing wireless communication environ-
ment. For example, XL-MIMO systems with their extremely
large-scale antenna arrays can benefit from AI-based beam-
forming strategies since AI solutions can exploit the near-field
environment effects dynamically to improve the SINR and
SE [84]. Additionally, AI-enabled user scheduling algorithms,
such as the one proposed in [81], can optimize resource allo-
cation for IoT networks by considering the high-density user
distribution typical of XL-MIMO scenarios. Future research
could delve deeper into the potential of generative AI, e.g.,
generative diffusion models [222], [223], in generating the
optimal resource allocation schemes according to the user
behavior and network conditions in XL-MIMO systems.

B. Energy Efficiency and Green Communication

As XL-MIMO systems increase in antenna numbers and
complexity, energy consumption becomes a significant issue.
Ensuring sustainability and widespread adoption of XL-MIMO
technology requires the development of energy-efficient pro-
cessing algorithms, power allocation schemes, and antenna
selection strategies [84], [218]. Specifically, distributed signal
processing algorithms can offload complex computations to
more energy-efficient Baseband Units (BBUs) in the cloud,
alleviating the energy demands at the base station. Distributed
computing techniques, when integrated into XL-MIMO archi-
tectures, can utilize the computing power of edge devices,
further optimizing energy utilization [198]. For instance, the
authors in [198] demonstrated an application of reinforce-
ment Q-learning for optimal content caching in IoT-enabled
multi-cell mMIMO systems, achieving considerable energy
efficiency gains. Furthermore, energy-aware activation of RF
chains in XL-MIMO systems was proposed in [84]. By
leveraging energy-aware algorithms, the system can dynam-
ically adjust the number of active RF chains based on real-
time communication requirements. This strategy allows for a
flexible response to the increased DoFs in the near-field region,
ensuring an optimal balance between energy consumption and
system performance.

C. Semantic Communications

Advancements in XL-MIMO system performance can be
realized by adopting innovative communication paradigms
such as semantic communications (SemCom) [224]. SemCom
can improve network efficiency and reduce the burden of
wireless data transmission by extracting and transmitting task-
related semantic information from source data [225], [226].
In particular, the semantic information encoder can extract
semantic features from the source data. These extracted fea-
tures, being more compact than the original data, reduce
the necessity for unnecessary wireless transmissions, thereby
promoting the deployment of URLLC [227]. Additionally, the
implementation of the XL-MIMO technique can enhance the
efficacy of the SemCom system. More specifically, an attention
feature module incorporated into the semantic encoder can
utilize these extracted features to produce a series of scaling
parameters [31], [228]. These parameters, symbolizing the
significance of the semantic features, can guide resource

allocation and beamforming design [229]. For instance, un-
der conditions of constrained network resources, intricate
beamforming schemes can prioritize the transmission of more
critical semantic information, consequently ensuring error-free
communication [230].

D. XL-MIMO-Aided Wireless Network Security

The deployment of XL-MIMO technology introduces new
security and privacy challenges due to its unique near-field
characteristics and large-scale antenna arrays [91], [204],
[215]. Addressing these issues necessitates the development of
secure signal processing schemes, authentication mechanisms,
and encryption techniques to counter diverse threats, includ-
ing jamming and eavesdropping [231]. Specifically, enhanced
physical layer security can be achieved by harnessing the
large-scale antenna arrays inherent in XL-MIMO systems to
generate secure communication channels, thereby complicat-
ing the interception of transmissions by eavesdroppers and of-
fering a degree of defense against jamming attacks [91]. Con-
currently, the near-field effects unique to XL-MIMO systems
provide an opportunity to devise innovative location-based
authentication schemes, thereby ensuring network access is
restricted to legitimate users within a specific spatial region
and mitigating risks related to covert communications. Future
research could potentially further exploit machine learning-
based anomaly detection and intrusion prevention mechanisms
tailored to the unique characteristics of XL-MIMO systems,
thereby advancing the state of security in XL-MIMO-enabled
wireless networks.

E. Testbeds and Experimental Evaluation

To validate the theoretical results and performance claims
of XL-MIMO systems, it is necessary to conduct extensive
experimental evaluations through the development of testbeds
and prototypes [81], [215], [216]. This can provide invaluable
feedback for refining XL-MIMO technology’s design, imple-
mentation, and optimization. For example, the work in [218]
demonstrates the effectiveness of a distributed approach for
minimizing energy consumption in CF mMIMO-enabled mo-
bile edge networks, which could serve as a basis for further
experimental evaluation. Similarly, the DAP architecture pro-
posed in [84] could benefit from experimental validation to
confirm its effectiveness in exploiting the near-field effects
for capacity improvement in 6G XL-MIMO networks. The
development of XL-MIMO testbeds would also facilitate the
exploration of various aspects, such as channel modeling,
antenna array configurations, and user distribution, under
realistic network conditions. In addition, the establishment of
standardized benchmarks for the evaluation and comparison
of different XL-MIMO algorithms and architectures would
significantly contribute to the advancement of this technology.
Overall, experimental evaluations and testbed development are
crucial for bridging the gap between theoretical research and
practical implementation of XL-MIMO systems.
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VII. CONCLUSIONS

The 6G of wireless systems is expected to push further the
limits to support extreme connectivity, ultra-low latency, mas-
sive capacity, enhanced coverage, and green communications
for connecting the physical and human worlds. By offering the
unique characteristics of communicating in the radiative near-
field, XL-MIMO is considered one of the promising technolo-
gies to support the ambitious goals of 6G. In this context, this
paper has provided a comprehensive review of XL-MIMO, an
integral part of 6G wireless communications. Four promising
XL-MIMO hardware designs and their characteristics were
first introduced. Then, we presented various channel modeling
schemes for XL-MIMO, which provided essential fundamen-
tals and insights for the research on XL-MIMO. Furthermore,
a comprehensive review and motivation of signal processing
schemes, particularly those with low complexity, were con-
ducted to facilitate the practical implementation of XL-MIMO.
Last, many XL-MIMO-empowered application scenarios and
future directions for XL-MIMO were highlighted. Our survey
serves as a guideline for primary XL-MIMO research works in
future 6G communications from the perspective of hardware
design schemes, channel modeling, low-complexity signal pro-
cessing design, XL-MIMO-empowered application scenarios,
and promising future directions.
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[51] Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and
channel estimation for holographic massive MIMO with planar arrays,”
IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 997–1001, May 2022.

[52] L. Sanguinetti, A. A. D’ Amico, and M. Debbah, “Wavenumber-
division multiplexing in line-of-sight holographic MIMO communica-
tions,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2186–2201,
Apr. 2023.

[53] L. Wei, C. Huang, G. C. Alexandropoulos, W. E. I. Sha, Z. Zhang,
M. Debbah, and C. Yuen, “Multi-user holographic MIMO surfaces:
Channel modeling and spectral efficiency analysis,” IEEE J. Sel. Top.
Sign. Process., vol. 16, no. 5, pp. 1112–1124, Aug. 2022.

[54] S. Hu, F. Rusek, and O. Edfors, “Beyond massive MIMO: The potential
of data transmission with large intelligent surfaces,” IEEE Trans. Signal
Process., vol. 66, no. 10, pp. 2746–2758, May 2018.

[55] ——, “Beyond massive MIMO: The potential of positioning with large
intelligent surfaces,” IEEE Trans. Signal Process., vol. 66, no. 7, pp.
1761–1774, Apr. 2018.

[56] R. J. Williams, E. De Carvalho, and T. L. Marzetta, “A communication
model for large intelligent surfaces,” in Proc. 2020 IEEE Int. Conf.
Commun. Workshops (ICC Workshops), Jun. 2020, pp. 1–6.

[57] D. Dardari, “Communicating with large intelligent surfaces: Funda-
mental limits and models,” IEEE J. Sel. Areas Comm., vol. 38, no. 11,
pp. 2526–2537, Jul. 2020.

[58] M. Cui, L. Dai, R. Schober, and L. Hanzo, “Near-field wideband
beamforming for extremely large antenna array,” arXiv:2109.10054,
2021.

[59] Z. Zhang and L. Dai, “Pattern-division multiplexing for multi-user
continuous-aperture MIMO,” IEEE J. Sel. Areas Commun., vol. 41,
no. 8, pp. 2350–2366, Aug. 2023.

[60] Y. Liu, J. Xu, Z. Wang, X. Mu, and L. Hanzo, “Near-field communi-
cations: What will be different?” arXiv:2303.04003, 2023.

[61] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen,
R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO surfaces
for 6G wireless networks: Opportunities, challenges, and trends,” IEEE
Wireless Commun., vol. 27, no. 5, pp. 118–125, Oct. 2020.

[62] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis,
and I. Akyildiz, “A new wireless communication paradigm through
software-controlled metasurfaces,” IEEE Commun. Mag., vol. 56, no. 9,
pp. 162–169, Sep. 2018.

[63] H. Iimori, T. Takahashi, K. Ishibashi, G. T. F. de Abreu,
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